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Preface

All engineers could benefit from at least one course in Reliability Physics &
Engineering. It is very likely that, starting with your very first engineering position,
you will be asked—how long is your newly developed device expected to last? This
textbook was designed to help answer this fundamentally important question. All
materials and devices are expected to degrade with time, so it is very natural to ask—
how long will the device last?

The evidence for material/device degradation is apparently everywhere in nature.
A fresh coating of paint on a house will eventually crack and peel. Doors in a house
can become stuck due to the shifting of the foundation. The new finish on an
automobile will oxidize with time. The tight tolerances associated with finely
meshed gears will deteriorate with time. Critical parameters that are associated
with precision semiconductor devices (threshold voltages, drive currents, intercon-
nect resistances, capacitor leakages, etc.) will degrade with time. In order to under-
stand the lifetime of the material/device, it is important to understand the reliability
physics (kinetics) for each of the potential failure mechanisms and then be able to
develop the required reliability engineering methods that can be used to prevent, or
at least minimize the occurrence of, device failure.

Reliability engineering is a fundamental part of all good electrical, mechanical,
and civil engineering designs. Since proper materials selection can also be a
critically important reliability factor, reliability engineering is also very important
tomaterials scientists. Reliability is distinguished from quality in that quality usually
refers to time-zero compliance or conformance issues for the material/device. Reli-
ability refers to the time dependence of material/device degradation. All devices
(electrical and/or mechanical) are known to degrade with time. Measuring and
modeling the degradation rate, the time to failure, and the failure rate are the
subjects of reliability engineering.

Many electrical and mechanical devices, perhaps due to performance and/or cost
reasons, push their standard operating conditions (use conditions) very close to the
intrinsic strength of the materials used in the design. Thus, it is not a question of
whether the device will fail, but when. Reliability engineering methods permit the
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electrical engineer, armed with accelerated testing data, to claim with confidence that
a newly designed integrated circuit will last at least 10 years under specified voltage
and temperature operating conditions. Reliability engineering methods permit the
mechanical engineer to claim that the newly designed engine will last for
180,000 miles at 3000 rpm with an oil change required every 6000 miles. Reliability
engineering methods permit the civil engineer to claim that a newly designed bridge
should last at least 75 years under specified environmental and use conditions.
Reliability engineering methods enable the materials scientist to select a cost-
effective material which can safely withstand a specified set of high-temperature
and high-stress use conditions for more than 10 years.

This textbook provides the basics of reliability physics and engineering that are
needed by electrical engineers, mechanical engineers, civil engineers, biomedical
engineers, materials scientists, and applied physicists to help them to build better
devices/products. The information contained within should help all fields of engi-
neering to develop better methodologies for more reliable product designs, reliable
materials selections, and reliable manufacturing processes—all of which should
help to improve product reliability. A mathematics level through differential equa-
tions is needed. Also, a familiarity with the use of Excel spreadsheets is assumed.
Any needed statistical training and tools are contained within the text. While device
failure is a statistical process (thus making statistics important), the emphasis of this
book is clearly on the physics of failure and developing the reliability engineering
tools required for product improvements during device-design and device-fabrica-
tion phases.

Plano, TX, USA J. W. McPherson
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Chapter 1
Introduction

It is very frustrating (and often very expensive) to buy a device only to have it to fail
with time. However, all devices (from integrated circuits to automobile tires) are
fabricated from materials that will tend to degrade with time. The materials degra-
dation will continue until some critical device parameter can no longer meet the
required specification for proper device functionality. At this point, one usually
says—the device has failed. The failure could be due to an increase in capacitor
leakage (in the case of the integrated circuits) or the inability of an automobile tire to
hold proper pressure (blowout). Materials degradation and eventual device failure
are the subjects of Reliability Physics and Engineering. Reliability physics is nor-
mally associated with understanding the kinetics (temperature and stress depen-
dence) of failure mechanisms. Reliability engineering is usually associated with
establishing: proper design rules, robust materials selection criteria, and good
manufacturing guidelines for reliable device fabrication and use.

Device failure, be it either electrical or mechanical, can usually be attributed to
the degradation of a given material under stress. The term stress, as used in this text,
is very general and not restricted just to the more common meaning: mechanical
stress. Capacitors can fail because of dielectric breakdown due to electric-field
stress. Interconnects can fail because of resistance rises due to electromigration-
induced voiding as a result of a high current-density stress. Metal-oxide-silicon field-
effect transistors (MOSFETs) can fail due to interface-state generation during a
voltage/field stress. Mechanical components can fail because of creep due to a
high tensile stress. Metal corrosion can occur because of high humidity stress.
Mechanical components can fail due to fatigue which can result from cyclical
mechanical stress. Surfaces can wear due to a shearing frictional stress. Compo-
nents can rupture because of crack propagation due to thermomechanical stress
during temperature cycling.

Stress, as used in this text, will refer to any external agent which is capable of
causing degradation to occur in the material properties such that the device can no
longer function properly in its intended application. In the case of dielectrics, this
could be the dielectric breakdown which occurs when an electric-field stress exceeds
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the dielectric strength of the material (e.g., for SiO2 this is >10 MV/cm). Or, in the
case of metals, this might be the rupture which occurs when a mechanical stress is
applied which exceeds the rupture strength of the metal (e.g., for aluminum inter-
connects this is >600 MPa). However, even when a material is stored at a fixed level
of stress less than the material’s strength, the material will still degrade with time and
device failure is eventually expected.

The observed time-to-failure (TF) will depend on the temperature and the
magnitude of the applied stress relative to the breakdown strength of the material.
The breakdown strength is usually defined as the level of stress at which the material
is expected to fail instantaneously. [By instantaneous, it is meant that the time-to-
failure is extremely short (few seconds) versus the time-to-failure (many years) when
the material is stressed at 50% of its breakdown/rupture strength.] To ensure that
time-dependent failures are minimized during the expected lifetime of the product,
historically, a good engineering design will comprehend the distribution of material
strengths that is likely to result from normal processing/fabrication, and then keep
the design stress-level well below these strength values. This is usually referred to as
the safety factor approach for increased reliability margin.

The safety factor approach is, however, only qualitative (relative to time-to-
failure modeling) and is becoming increasingly difficult to use for aggressive
designs. For example, integrated circuits where device feature sizes continue to be
aggressively scaled according to Moore’s Law (a 0.7� reduction in feature size per
technology node), the scaling has generally caused device current densities and
electric fields to increase, forcing the normal use-conditions to be ever closer to
the breakdown strength of the materials. In addition, the temperature cycling of
assembled silicon chips generally leads to large thermomechanical stresses due to
the thermal-expansion mismatch of the dissimilar materials used in chip fabrication
and in the assembly process.

Mechanical devices also tend to be designed aggressively because of higher
performance and/or materials cost-reduction demands. This serves to push the
normal operational conditions much closer to the breakdown strength of the mate-
rials. How close can the application stress be to the material’s strength (commonly
referred to as the reliability margin or design rule), in order to achieve many years of
reliable device operation, depends on the degradation rate for the material/device.
The stress and temperature dependence of this degradation rate is the subject of
reliability physics and is normally studied through the use of accelerated testing.

Chapter 2 will focus on the physics of degradation and why all fabricated
materials are fundamentally unstable. Chapters 3, 4, and 5 will concentrate on
material/device degradation models and the development of the critically important
time-to-failure models. Since time-to-failure is statistical in nature, an overview of
the needed statistical tools is presented in Chaps. 6 and 7. Failure-rate modeling is
presented in Chap. 8. The use of accelerated testing methods and the modeling of the
acceleration factors are presented in Chaps. 9 and 10, respectively. Important ramp-
to-failure testing methods are introduced in Chap. 11. In Chap. 12, time-to-failure
models are presented for selected failure mechanisms in electrical engineering
applications. Likewise, in Chap. 13, time-to-failure models are presented for
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selected failure mechanisms in mechanical engineering applications. Chapter 14
describes how dynamical (time-dependent) stresses can be converted into static-
value equivalents for easy use with all the models developed. Chapter 15 looks at the
reliability impact of resonance and resonance avoidance methods. Chapter 16
focuses on the practical use of reliability enhancement factors, during initial product
design and development, in order to increase the expected product lifetime and to
reduce the expected device failure rate during customer use. Chapter 17 discusses the
use of short-duration elevated stresses to screen out defective devices/materials. The
critical importance of heat generation and dissipation for device/materials reliability
is discussed in Chap. 18. The book is concluded with Chap. 19 which discusses
sampling statistics and confidence intervals for defect level determination and for
time-to-failure determination.
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Chapter 2
Physics of Degradation

Regardless how carefully crafted, devices are made of materials that generally exist
in metastable states. A state is referred to as being metastable if it is only apparently
stable and susceptible to change/degradation. The driving force for materials degra-
dation is a lowerGibbs Potential. When we apply a generalized stress ξ to a material,
it tends to increase (not lower) the Gibbs Potential. Therefore, a stressed material is
even more unstable and even more susceptible to degradation. Since devices are
fabricated from materials (and materials degrade with time), then devices will
degrade with time. Engineers are confronted with the very difficult situation—they
must manage the degradation rate in order to prevent failure.

The focus of this chapter is understanding the physics of degradation. This
includes a better understanding of the driving force for degradation and the roles
that a generalized stress ξ and temperature T play in the degradation process.
Material defects can often play important roles in the degradation process. For this
reason, it can be important to start (at time zero) with materials that are relatively
defect free. This, however, raises an important question that must be addressed—is it
possible to build a defect-free material?

1 Degradation

We are all confronted with this truism—regardless of how carefully crafted a device
is at time zero, the materials in the device will degrade with time. Evidence of
material degradation (deterioration of a material’s properties with time) seemingly
exists everywhere. Several illustrations of common material degradation mecha-
nisms are shown in Fig. 2.1. Cracks tend to develop in a brick wall due to
foundation/soil erosion. Regardless of the quality of paint, paint will degrade
under environmental conditions and eventually crack and peel. A metal roof, once
bright and shiny, will oxidize/corrode with time. Finally, in Fig. 2.1d, one can easily
see that you and I are not immune to degradation—the teeth shown have developed
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decay and the decay has led to needed fillings and cracks in the teeth. Thus, we have
to accept the fact that materials will degrade with time. Since devices are made of
materials, device degradation will occur as a result of materials degradation.

2 Rise of Entropy

Most of us are familiar with, and know the importance of, the First Law of
Thermodynamics. The First Law tells us that energy is conserved. Energy can be
transformed, but it is always conserved. For example, suppose that a ball is dropped
from the roof of a building at a height h0. The initial potential energy of the ball is
mgh0, where m is the mass of the ball and g is the acceleration of gravity. As the ball
drops, the potential energy of the ball is transformed to kinetic energy. When the ball
bounces from the sidewalk below, we note that it returns to a height h1, where
h1 < h0. It seems that some of the initial energy of the ball was lost. But no, when the
potential energy of the ball at its new maximum height h1 is added to the thermal
energy produced (as the ball falls through the frictional forces of the air) plus the
thermal energy produced when the ball slams into the concrete sidewalk below, then
the total energy perfectly matches the initial potential energy of the ball. Thus, some
of the initial potential energy was transformed to heat, but the total energy was
conserved!

Fig. 2.1 (a) Cracks tend to develop in brick walls as the foundation degrades. (b) Paint will
eventually crack and peel. (c) Bright shiny metal roofs will oxidize/corrode. (d) Human beings are
not immune to degradation—note the tooth decay, fillings, and cracking
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The Second Law of Thermodynamics is probably lesser known but, arguably, it is
just as important as the First Law. The Second Law tells us that for an isolated
system of particles (atoms, molecules, gases, liquids, solids), the entropy (chaos) of
the system will tend to increase spontaneously with time. This means that for an
isolated system (a system for which no energy or mass can be transferred), order
tends to degrade with time. As for its impact on reliability, the Second Law means
that even the most carefully prepared material/device will tend to degrade with time.

A couple of examples of increasing entropy/chaos are illustrated in Fig. 2.2. Once
an egg is cracked (Fig. 2.2a) it tends to remain broken. A dropped object (Fig. 2.2b)
seemly breaks into a million pieces. In these examples, an external force acted on the
system to produce the degradation. Such processes or actions tend to increase the
entropy S of the system. If the system is isolated after breakage, then these changes
are irreversible.

Shown in Fig. 2.3a is another example of increasing entropy. During a blizzard,
chaotic conditions tend to develop. These chaotic conditions can produce: random-
ness in the flying snowflakes, downed trees, and broken power lines. In fact, even
more entropy/chaos can be generated if we simply allow the temperature to rise
(addition of heat) and the snowflake crystals begin to melt. This is what happens to
isolated systems (or systems with external dissipative forces acting)—the entropy
tends to increase with time.

If the system is, however, not totally isolated (thus permitting energy flow), then
Fig. 2.3b shows that some degree of order can be reestablished if we are willing to
input energy into the system. In this case, the energy input is in the form of work.
Work against frictional forces was required to roll the snow into snowballs. Work
against gravity was required to stack the snowballs vertically thereby creating the
snowmen family shown. Thus, work (done by an external force) was required to

Fig. 2.2 Examples of
increased entropy. (a) Egg
tends to split when cracked.
(b) Object breaks into many
pieces when dropped
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bring the system’s chaos back into some semblance of order. We also know this from
common experience—a child’s room, left unattended, generally becomes more
chaotic with time. Only occasional work by the parent can restore the room back
to its original order. Apparently work can serve to decrease the entropy of the child’s
room and might seem to violate the Second Law. However, in order for humans to do
work, enormous amounts of food must be consumed. During digestion of such food,
orderly plant and animal cell structures are broken down resulting in a large rise in
entropy. Thus, the decrease in room entropy is more than offset by the rise in entropy
elsewhere.

Before we leave this section, it should be noted that the snowmen in Fig. 2.3 are
not very stable—a little wind or slight increase in temperature and the snowmen will
begin to degrade. Due to the lack of stability in these work-created snowmen, their
precarious state can be described as metastable.

3 Metastable States

Materials/devices/systems often appear to be in very stable states. However, they are
simply captured in momentary metastable states. Metastable means that the existing
state/configuration is only apparently stable in that it can undergo transformation,
with time, to a more stable state (state with lower potential energy).1 For example, a
pebble on the edge of a cliff appears to be very stable until a slight push is given to
the pebble. Note, however, that an input of energy was required to activate a change
in the metastable state for the pebble.

Perhaps it is instructive to work through a simple example—one that is familiar to
all of our experiences. This simple example should help us to better understand the

Fig. 2.3 (a) Chaos develops during a blizzard. (b) Work can seemly convert chaos into order

1Actually, a state with lower Gibbs Potential (as discussed in Sect. 4).
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strong driving force for all materials/devices to reach the lowest potential energy
state available. Shown in Fig. 2.4 is a rectangular block that is momentarily captured
in ametastable vertical statewith potential energyU1. However, a horizontal state is
also available to the block and at a lower potential energy U2. Since U2-U1 is
negative, and if an energy input of ΔU* is supplied (for example, by simply shaking
or bumping the supporting table), then a potential-energy reduction (driving-force)
exists for the block center of mass (CM) to go from vertical state (with potential
energy U1) to horizontal state (with lower potential energy U2).

The driving force (ΔU ) for block transformation, from vertical to horizontal
position, is driven by a potential energy reduction:

ΔU ¼ U2 � U1 ¼ �Mg

2
L�Wð Þ, ð2:1Þ

where M is the mass of the block, g is the acceleration of gravity, W is the width of
the block, and L is its height. The input energy ΔU* required to activate the block
transformation process is given by:

ΔU∗ ¼ Mg

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þW2

p
� L

� �
: ð2:2Þ

From the above equations it can be seen that when the height of the block L
increases relative to the width W, the block becomes less stable in the vertical state
(ΔU becomes more negative). Also, it is noted that the input energy ΔU* required to
activate the block transformation (from vertical to horizontal state) also reduces. In
fact, the activation energy ΔU* goes to zero when L>>W. This simple example of

L

W

CM
U1

U2

ΔU*

Fig. 2.4 Rectangular block is momentarily captured in the vertical position with potential energy
U1. This vertical position is a metastable state for the block center of mass (CM) because a lower
potential-energy state (U2) is available for the center of mass. The driving force for a change of state
is that U2 must be of lower potential energy than U1. However, an input of work energy (by an
amount of ΔU*) is required to activate the change of state
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block instability serves to illustrate something that is very important and fundamen-
tal to reliability physics: materials put in higher potential energy states are funda-
mentally more unstable.

In the simple example shown in Fig. 2.4, only gravitational potential energy was
considered to be important. The required energy input needed to produce a block
transformation (from vertical to horizontal state) was in the form of work (something
must push on the block or shake/bump the supporting table). However, we will
discuss below thermodynamic systems where the required energy input for trans-
formation can be in the form of work and/or heat. Reduction in the Gibbs Potential
ΔG will serve as the driving force (as opposed to simply the gravitation potential
energy used for the block transformation analysis above).

4 Gibbs Potential/Free-Energy (A Brief Review)

Let us first start with a system of particles (gas, liquid, or solid) and use the First Law
of thermodynamics (conservation of energy). We will let U represent the internal
energy of the system (sum of kinetic plus the potential energy of all particles). Any
infinitesimal change in the internal energy dU of the system must be equal to any
infinitesimal heat additions δq to the system plus any infinitesimal work δw done on
the system: dU¼δq+δw.2 If the heat is added in a quasistatic/reversible manner, then
δq¼TdS, where T is the temperature (Kelvin) and S is the entropy. The infinitesimal
work δw done on the system is given by δw¼ξdε, where ξ is a generalized stress
(external agent) that produces a generalized strain ε (system response). Several
examples of generalized stresses and generalized system responses (strains) are
shown in Table 2.1.

The infinitesimal changes in internal energy dU of the system (due to quasistatic
heat additions to the system and any work done on the system) can be expressed as:

dU ¼ δ Heatð Þ þ δ Workð Þ
¼ TdS þ δ Workð Þ
¼ TdS � pdV þ σdεþ EdPþ HdM þ etc:,

¼ TdS � pdV þ
X
i

ξidεi,

ð2:3Þ

where p is the pressure acting on system of volume V, T is the temperature (Kelvin),
and S is the entropy. ξi represents an external generalized stress (mechanical,
electrical, magnetic, chemical, etc.) acting on the system to produce a generalized
system response εi (strain, polarization, magnetization, mole number, etc.).
Rearrangement of Eq. (2.3) gives,

2The symbol δ is used (versus d ) to indicate that the quantity may not be an exact differential (see
Appendix F).
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dU þ pdV � TdS ¼
X
i

ξidεi: ð2:4Þ

The differential Gibbs3 Potential dG is a defined potential and is given by

dG ¼ dU þ pdV � TdS ¼ dH � TdS ¼
X
i

ξidεi, ð2:5Þ

where dH¼dU+pdV is the differential enthalpy. If there are no changes in system
volume, then, changes in enthalpy and internal energy are the same: dH¼dU. For
materials/device degradation, we are generally interested in spontaneous changes in
the Gibbs Potential at constant pressure p, constant temperature T, and constant
generalized stress ξi. Under these conditions, the change in Gibbs Potential can be
found by integrating Eq. (2.5) and we obtain either:

ΔG ¼ ΔH � TΔS ð2:6Þ

or

ΔG ¼
X
i

ξiΔεi ð2:7Þ

Let us first concentrate on ΔG using Eq. (2.6). There are two primary ways that a
system can spontaneously lower its Gibbs Potential: by a decrease in enthalpy (ΔH)
or by an increase in entropy (ΔS). These two methods, for Gibbs Potential ΔG

Table 2.1 Methods for doing differential work on materials/devices

Materials/
devices Type of work Intensive and extensive variables

Differential work δw done
on material/device

Fluids Mechanical Pressure p and volume V �pdV

Elastic
filaments

Mechanical Force F and length L FdL

Solids Mechanical Mechanical stress σ and volume
V

σdV

Dielectrics Electrical Electric field E and polarization P EdP

Magnetics Electrical Magnetic field intensity H and
magnetization M

HdM

Batteries Electrochemical Voltage V and charge stored Q VdQ

Fuel cells Chemical Chemical potential μ and mole
number N

μdN

3Willard Gibbs was an American physicist/physical-chemist/mathematician (1839–1903). As a
physicist/physical-chemist, he was the first to combine the First and Second Laws of Thermody-
namics into a single equation (Eq. (2.3)). As a mathematician, he invented vector calculus. Albert
Einstein once described Gibbs as “the greatest mind in American history.”
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reduction, are illustrated in Fig. 2.5. In one case (oil in water) the cohesive binding-
forces dominate, while in the other case (alcohol in water), the dispersive (diffu-
sional) forces dominate. While these two examples of spontaneous change seem to
be contradictory, they both reach the same objective—a lower Gibbs Potential.

Shown in Fig. 2.5a is the situation where cohesive binding-forces dominate.
When very small individual droplets of oil are added to water at time zero, at
some later time the individual droplets will spontaneously start to coalesce into a
localized oil-rich region. In this case the cohesive forces attracting the oil molecules
are so great that a reduction in Gibbs Potential ΔG occurs through a reduction in
enthalpy ΔH. However, the apparently opposite situation is shown in Fig. 2.5b.
When alcohol is placed in a very localized region of the water at time zero, the
alcohol spontaneously starts to disperse. Here, since the binding energy among the
alcohol molecules in water is relatively weak, the dispersive forces are great (driven
by an entropy increase ΔS). In summary, a lower Gibbs Potential can be produced
either by strong molecular bonding or by strong entropy increases.

Let us now concentrate on the change in Gibbs Potential ΔG expressed by
Eq. (2.7). Because of the way that Gibbs Potential is defined, if the external forces
acting on the system are against resistive conservative system forces, then the work
performed by the external forces (Eq. (2.5)) serves to increase the Gibbs Potential for
the system. This increase in stored potential energy is, of course, free to do work at
some later time. For this reason, the Gibbs Potential is also referred to as Gibbs Free
Energy. In this textbook, the two terms (Gibbs Potential and Gibbs Free Energy) will

Fig. 2.5 Gibbs Potential
reduction can occur due to:
(a) reduction in enthalpy
due to dominance of
cohesive binding-forces or
(b) increase in entropy due
to dominance of dispersive
forces
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be used interchangeably. An important feature of the Gibbs Potential is the fact that it
has been defined in such a way that any spontaneous changes in the Gibbs Potential
ΔG can occur only if the change leads to a reduction in Gibbs Potential. Thus,
according to Eq. (2.7), for a stressed system (under constant generalized stress ξ), the
only allowed spontaneous changes for the stressed system are those changes that
lead to a relaxation/degradation of the generalized strain Δε.

An example of generalized strain Δε relaxation/degradation is illustrated in
Fig. 2.6. We show a capacitor dielectric under a constant electric field ξ stress in
Fig. 2.6a. The electric field ξ has done work on the dielectric to create the
polarization P (an ordering of the dipoles). Thus, the work against the conserva-
tive resistive forces of the polarization P has increased the potential energy of the
stressed dielectric and this serves to increase the Gibbs Potential. However, as
illustrated in Fig. 2.6b, the Gibbs Potential G can be reduced if the dielectric
spontaneously degrades (causing a polarization ΔP relaxation/reduction). An
even greater reduction in ΔG occurs if dielectric eventually breaks down
thereby causing the polarization P to collapse and a conductive filament (short)
to form.

Before we leave this very important section for reliability physics, let us briefly
summarize. Work done on a system/material, against conservative resistive system
forces, tends to increase the potential energy of the system/material; therefore,
work can increase the Gibbs Potential G. However, the increase in Gibbs Potential
makes a system/material more unstable because the Gibbs Potential prefers a
decrease in potential (not an increase). Thus, for a material in a stressed state,
spontaneous-change/degradation in the stressed material is expected since the
degradation leads to a reduction in Gibbs Potential/Free-Energy.
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Fig. 2.6 (a) Gibbs Potential/Free-Energy increase to due field-induced polarization P in dielectric
when a voltage drop of ΔV occurs. (b) Gibbs Potential/Free-Energy reduction occurs (due to
polarization collapse) when the dielectric breaks down thereby causing a short that permits
current flow
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5 Relationship Between Increased Gibbs Potential
and Decreased Stability

Let us look more closely at how the metastable state shown in Fig. 2.4 was created.
To create this metastable state, an external force has to do work against the force of
gravity (as shown in Fig. 2.7).

As we slowly (quasi-statically) move the block, from horizontal to vertical
position, work must be done against gravity. The external force Fext must be in the
positive y direction (since the force of gravity is in the negative y direction). This
gives the work against gravity:

WAgainst Gravity ¼
ZY2

Y1

~Fext • d~y ¼ Mg

ZY2

Y1

dy ¼ Mg Y2 � Y1ð Þ ¼ ΔU, ð2:8Þ

where ΔU is the increase in potential energy of block. While this example deals only
with gravity, this simple example serves to establish a general trend—work done
against conservative resistive forces4 tends to increase the potential energy of the
body/system. The generalized stresses shown in the Table 2.1 are derived from
conservative forces. Thus, the work done against these conservative forces will serve
to increase the potential energy of the material/device.

The increase in potential energy for the center of mass (CM) of block comes at the
expense of decreased block stability because the Gibbs Potential increases
(ΔG¼ΔU). Recall that the Gibbs Potential wants to decrease, not increase. We
will now demonstrate, through several examples which follow, that this is a general
feature of degradation—external forces, acting against conservative resistive forces

CM

U1 

U2 

y 

y2

y1

Vertical Position

Horizontal Position

CM 
Fext = +Mg

Fgravity = -Mg

Fig. 2.7 When work is
done against gravity, the
block is put into the vertical
metastable state. The work
against gravity serves to
increase the potential energy
of the block (in vertical
position); but the increase in
potential energy for the
center of mass (CM) of
block comes at the expense
of decreased block stability

4A force is said to be conservative if the work done by the force around any closed path is zero. This
is discussed in some detail in Appendix F.
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of a system, will increase the potential energy of the system and this will increase the
Gibbs Potential of the system. However, the increase in Gibbs Potential for the
system comes only at the expense of less stability for the system.

An illustration of a hydroelectric power generation station is shown in Fig. 2.8. A
dam is constructed in a river that flows down from the mountains. As the gravita-
tional potential energy of the water at the dam increases (with lake depth h), this
serves to increase the resistive stresses of the dam. The greatest pressure on the dam
occurs at the base of the dam where the generator is placed for maximum power
generation. The mechanical stresses on the dam will tend to put the dam into a
metastable state and degradation is expected.

The mechanical stress σ on the dam at position x below the surface of the water is
given by:

σ xð Þ ¼ ρgx, ð2:9Þ

where ρ is the density of water and g is the acceleration of gravity. Because the dam
must resist the pressure of the water (Newton’s third law), the increase in potential
energy density w in dam (as the depth of the water increases to h) is given by:

w¼
Zεmax

0

σ xð Þdε ¼ 1
E

Zσmax

0

σ xð Þdσ

¼ ρgð Þ2
E

Zh
0

xdx ¼ ρghð Þ2
2E

:

ð2:10Þ

where E is the effective modulus for the composite materials used during
dam construction. The increase in potential energy density for the dam is thus
given by,

Δu ¼ w ¼ ρghð Þ2
2E

: ð2:11Þ

Thus, as the depth h of water increases, the dam becomes less stable due to the
rise in the Gibbs Potential energy density (Δg¼Δu). If the stresses on the dam reach
the fundamental strength of the dam, then nearly instantaneous failure will occur. If
the stresses on the dam are less than its strength, degradation will still occur but, of
course, the degradation rate will be relatively slow. Figure 2.9 shows a dam that has
degraded over time and that has eventually failed catastrophically.

Shown in Fig. 2.10 is a cylinder of confined gas with a movable piston. The piston
can be used to compress the gas (can do work against the resistive force of the gas)
and thereby increases its pressure (internal energy).
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Work done by the external force in compressing the gas is given by:

Wagainst gas ¼
Zx
xo

~FExternal • d~x ¼
Zx
xo

bx �FExternalð Þ
A0

•A0bx dxð Þ

¼ �
ZV
V0

pdV :

ð2:12Þ

where p (¼Force/Area) is the pressure. For an ideal gas, the pressure can be
expressed by Boyle’s Law:

Lake Forms
Dam

River

Generator

h

x

Fig. 2.8 Dam shown is built for hydroelectric power generation. As the depth of water h increases,
the gravitational potential energy stored in the water increases. This creates resistive stresses in the
dam with the greatest pressure/stress occurring at the bottom of the dam where the generator is
placed

Fig. 2.9 Degradation of dam (due to pressure of water) and eventual failure
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p ¼ NRT

V
, ð2:13Þ

where N is the number of moles of gas, R is the ideal gas constant, T is the Kelvin
temperature, and V is the volume. Thus, the rise in potential energy of the confined
gas in the cylinder becomes

ΔU ¼ Wagainst gas ¼ �
ZV
V0

pdV ¼ �
ZV
V0

NRT

V
dV ¼ NRT ln

V0

V

� �
: ð2:14Þ

Note that as the volume of gas decreases, the pressure rises (Eq. (2.13)) and the
potential energy of the confined gas in the cylinder increases (Eq. (2.14)). This
serves to decrease the stability of the metal gas-cylinder because the Gibbs Potential
increases (ΔG¼ΔU). If the gas pressure increases to the rupture strength of the metal
cylinder, nearly instantaneous cylinder failure will occur. However, at lower gas
pressures (less than the rupture strength) cylinder degradation will still occur but at a
much slower rate. Shown in Fig. 2.11 is a storage tank that has undergone degrada-
tion with time and that has finally ruptured catastrophically.

Shown in Fig. 2.12 is a solid material put under compressive mechanical stress
due to an external force. The mechanical stress σ (¼Force/Area) deforms the solid,
thereby increasing the potential energy ΔU of the solid,

ΔU ¼ Wresistive forces ¼ A0

ZL
L0

σ dL ¼ A0

ZL
L0

E
L� L0
L0

� �
dL ¼

¼ 1
2
EL0A0

L� L0
L0

� �2

¼ 1
2
EV0ε

2 ¼ 1
2

V0

E

� �
σ2

ð2:15Þ

where ε is the material strain, E is Young’s modulus for material, and V0 is the
unstressed volume of the solid. This mechanical stress action on the solid serves to
increase its potential energy. The solid material becomes more unstable because of
the rise in Gibbs Potential (ΔG¼ΔU). If the mechanical stress σ is above the fracture
strength of the material, then nearly instantaneous failure will occur. At lower stress
levels, but above the yield stress,5 the material will degrade with time but at a much
slower rate. Shown in Fig. 2.13 are the threads of a bolt that have degraded and the
bolt finally failed catestrophically due to mechanical stress.

Shown in Fig. 2.14 is a capacitor dielectric under an electric field stress due to a
voltage drop ΔV across the dielectric. The electric field ξ in the dielectric serves to
do work against the resistive nature of the polarization P. The work done per unit

5Yield stress is the value of stress at which some level of permanent/plastic deformation occurs in
the material.
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volume w by the electric field on the dielectric increases its potential energy per unit
volume by Δu:

Δu ¼ w¼
Zx
0

~FExternal � d~x ¼
ZP
0

�
~ξ
� � d~P ¼

ZP
0

P

εdiel

� �
dP

¼ 1
2

P2

εdiel

� �
¼ 1

2
εdielξð Þ2
εdiel

 !
¼ 1

2
εdielξ

2,

ð2:16Þ

where εdiel is the dielectric constant. Thus, the total potential energy of the
dielectric increases by ΔU:

ΔU ¼ V0 Δuð Þ ¼ V0

2
εdielξ

2 ¼ tdiel � A0

2
εdielξ

2, ð2:17Þ

x0
x

Gas FExternal

FResistive

Fig. 2.10 The external
force (as it compresses the
gas) does work against the
resistive force of the gas.
Compression of the gas
causes a pressure rise and an
increase in its potential
energy

Fig. 2.11 Storage tank
degradation (due to fluid
pressure) and eventual
rupture
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where tdiel is the dielectric thickness and A0 is the area of the dielectric. With the
dielectric in a state of higher potential energy due to the electric field, dielectric
degradation is expected because of a higher Gibbs Potential (ΔG¼ΔU). If the electric
field exceeds the dielectric breakdown strength, nearly instantaneous failure will
occur. When the electric field is less than the dielectric breakdown strength, degrada-
tionwill still occur, but at amuch slower rate. A catestrophic capacitor failure is shown
in Fig. 2.15. Also, it is interesting to note that Eq. (2.17) indicates that, for the same
level of electric field stress, thicker dielectrics are more unstable than thinner; larger
area capacitors are more unstable than smaller area capacitors. Indeed, we find that
thicker dielectrics and larger area capacitors tend to have lower breakdown strength.

Finally, we consider the charging of a lithium-ion battery as illustrated in
Fig. 2.16. During charging we are increasing the potential energy ΔU stored in the
battery by an amount:

ΔU ¼ Q � V
¼ Battery Rating in Amp-hrð Þ½ � � Battery Voltage½ �:

ð2:18Þ

This increase in potential energy of the battery makes the battery less stable
because of the increase in Gibbs Potential (ΔG¼ΔU ). In fact, if one overcharges the
battery, it will degrade even more rapidly. The instantaneous power dissipation
during rapid discharge of a fully charged battery can be huge:

:
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Area = A0 
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Fig. 2.12 Solid material is
compressed by an external
force

Fig. 2.13 Threads on a bolt
have degraded (due to
mechanical tensile stress)
and the bolt eventually
failed
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Fig. 2.14 A capacitor under
electric field ξ stress. The
field does work on the
dielectric and this is
reflected as an increase in
polarization P

Fig. 2.15 Capacitor
degradation (under electric
field stress) and eventual
failure. Due to the large
amount of stored charge,
rapid capacitor discharge
can produce an explosive-
like failure mode when a
fully charged capacitor
undergoes time-dependent
dielectric breakdown
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Power ¼ dU
dt

¼ d
dt

QVð Þ � dQ
dt

� �
� VBattery ¼ IDischarge � VBattery: ð2:19Þ

Thus, rapid battery discharge (of a fully charged battery) can produce so much
heat that often a fire can develop in the surrounding materials. Shown in Fig. 2.17 is
an automobile fire that was alleged to have occurred when a cell phone underwent
rapid battery discharge.

Anode (-) Cathode (+)

Separator Electrolyte

Battery Charging

Electron
Flow Lithium

Ions

Fig. 2.16 Charging of a
lithium-ion battery. During
normal battery operation,
the anode is positive and the
cathode is negative.
However, their roles are
reversed during charging so
as to recover the depleted
lithium from the anode side

Fig. 2.17 An alleged automobile fire developed (due to cell phone overheating) when cell phone
battery underwent rapid discharge
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6 Dissipative Work

There are other forms of work that can be done against nonconservative forces.
Generally these forces generate dissipative work because the net effect is not to
increase the potential energy, but to increase the thermal energy (TE) of the material.
Shown in Fig. 2.18 is a form of dissipative work done on a solid.

Assuming negligible energy transfer to the table (and from block to air), conser-
vation of energy implies that the change in internal energy ΔU of the block must be
equal to the dissipative work done on the block,

ΔU ¼
Zx2
x1

~Fext � d~x ¼ μ mgð ÞΔx, ð2:20Þ

where μ is the coefficient of sliding friction, m is the mass of the block, and g is the
acceleration of gravity. Since this is dissipative work, the work serves only to
increase the thermal energy (TE) of the block,

Δ TEð Þ ¼ cHmΔT , ð2:21Þ

where ΔT is the temperature rise and cH is the specific heat of the block material.6

Equating the last two equations, one obtains the average temperature rise of the
block:

ΔT ¼ μg

cH

� �
Δx: ð2:22Þ

Dissipative work effectively adds heat to the material and this serves to increase
the thermal energy of the system. This increase in thermal energy (TE) is reflected as
a temperature rise for the system. Higher temperatures make the material less stable

Fig. 2.18 Example of dissipative work. Sliding a block across a rough-surface table that is
thermally insulated. The work against the sliding friction serves to increase the thermal energy of
the block

6Refer to Chap. 18 for more details.
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and thus more prone to degradation. The impact of elevated temperature on material
degradation rate is discussed in detail in Chap. 9.

Before we leave these two very important Sects. 5 and 6, let us again emphasize
that by doing work on a system, against conservative resistive forces, the work tends
to increase the potential energy of the system. The rise in system potential energy
makes the system less stable because of the higher Gibbs Potential (ΔG). Dissipative
work done against nonconservative forces tends to increase the thermal energy of the
system (recorded as a temperature rise) and this can also make the system less stable
and more prone to degradation.

7 Reaching Lower Gibbs Potential

Now that we understand—the only spontaneous changes that can occur in stressed
material are those changes that lead to a lower Gibbs Potential, we want to better
understand the forces that drive these spontaneous changes. While it is correct to say
that electrons/atoms/molecules respond to a gradient in Gibbs Potential, we want to
better understand the exact nature of the forces that drive a material’s spontaneous
change to a lower Gibbs Potential. To do this, we will focus on the gradients of
several specific potentials of interest.

Electrons/atoms/molecules respond to gradients, as illustrated in Fig. 2.19, with
each of these gradients leading to a lower Gibbs Potential. Large masses respond to
gradients in gravitational potential. Electrons respond to gradients in electrostatic
potential. Atoms/molecules respond to gradients in chemical potential, concentra-
tion/density, mechanical stress, pressure, and temperature. As shown in Appendix

Forces on Electrons/Atoms are Derived from Gradients

Gradient in Gravitational Potential

Gradient in Electrostatic Potential

Gradient in Chemical Potential

Gradient in Concentration/Density

Gradient in Mechanical Stress

Gradient in Pressure

Gradient in Temperature

Response To Gradients

Higher
Gibbs
Potential

Lower
Gibbs
Potential

Fig. 2.19 Electrons/atoms/molecules respond to potential gradients. Several common potential
gradients are illustrated that ultimately lead to a lower Gibbs Potential
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3, for a conservative force, the force (or force field) is given by the gradient in
potential. This is expressed by the equation,7

~Force ¼ �~∇ Potential x; y; zð Þ½ �: ð2:23Þ

The negative sign in Eq. (2.23) ensures that the force (acting on the electrons/
atoms/molecules) is always in a direction of lower potential.

Since degradation rate is ultimately related to how fast electrons/atoms/molecules
can respond to potential gradients, in Fig. 2.20, we show some rough rules of thumb
for how fast electrons/atoms/molecules can respond to potential gradients (fields). For
example, electron clouds about the nucleus of an atom can shift on the order of
femtoseconds when exposed to electrostatic gradients (electric fields). Bond
stretching occurs on the order of picoseconds when exposed to pressure/stress gradi-
ents. Polar molecules (in gaseous form) can respond to electric fields with rotations in
nanoseconds. The question of how fast can atoms/ions can diffuse in solids depends
strongly on the concentration gradient, material lattice, and temperature. It generally
takes very fast diffusers at room temperature (e.g., hydrogen and lithium)—micro-
second to diffuse/drift a distance of a single lattice constant. Obviously, for very slow
diffusers (large radius atoms in very dense solids) it could take years.

–

Fundamental Physics/Time-Constant Limitations

Electron Cloud Shift

Bond Stretching

Molecular Rotation
(In Gas)

Ion Drift/Diffusion
(In Solids)

+ + –

Response No Field Field Time
Constant

H2O H2O

~ 10-15 s

~ 10-9 s

~ 10-12 s

≥ 10-6 s+ + +

Ion Ion

Atom Atom

Molecule Molecule

1 Lattice Constant
@ 25°C

Fig. 2.20 Illustrations of how fast electron/atoms/molecules can respond to potential gradients
(fields)

7The gradient operator is given by: ~∇ ¼ bx ∂
∂x

þ by ∂
∂y

þ bz ∂
∂z

:
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8 Imperfect Materials/Devices

Before we leave this chapter, we want to address an important question for reliabil-
ity: since energy transfer to a system (such as work done on the system) can produce
more order, is it possible to create perfect order in a material? To answer this
question, we need to discuss the idea of lowest energy state versus lowest free-
energy state.

As illustrated in Fig. 2.21, with a negative bonding energy of (-Ebond), a lower
internal energy state U is created when: (a) an electron binds with a proton, (b) two
hydrogen atoms bond to form a H2 molecule, or (c) many atoms bond to form a
crystalline solid (Fig. 2.20c). Thus, lower and lower internal energy U is achieved
with more and more bonding. The very lowest internal energy U configuration
would be achieved with a perfect crystalline formation, as illustrated in Fig. 2.21c.
However, this perfect crystal, while it may be the lowest internal energy stateU, may
not be the lowest free-energy state G.

In Fig. 2.22a we show a perfect lattice, while in Fig. 2.22b we show the same
lattice but with a single missing atom (called a vacancy). Is it possible that the lattice
with a defect could actually have a lower free energy?

Let us first consider Fig. 2.22a and assume that each bond leads to a lower energy
by an amount of (–Ebond). Thus, the internal energy of the perfect crystal can be
written as,

Proton
a

b

c

+

Electron Hydrogen Atom
Binding Energy

-13.6eV

+

Hydrogen Hydrogen H2

-4.5eV

Crystal
Bonding Energy

Molecule
Bond Energy

Etotal =
Nbonds×(-Ebond)

+

+ + + +

+

+

+++

++

+ + + + +

+ + + +

+ + +

Fig. 2.21 System internal energy U can be lowered through: (a) binding energy of atoms, (b) bond
energy of molecules, (c) bonding energy of solids
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U ¼ Nbonds � �Ebondð Þ: ð2:24Þ

Let us now consider Fig. 2.22b. With the introduction of a missing atom (single
vacancy), bonds must be broken and thus the internal energy will increase by an
amount ΔE with the introduction of each vacancy. The increase in internal energy of
the solid due to the introduction of a number of vacancies n can be written as:

ΔU ¼ n � ΔE: ð2:25Þ

From Eq. (2.6), the change Gibbs free energy is given by,

ΔG ¼ ΔU � TΔS ¼ n •ΔE � TΔS: ð2:26Þ

The change in entropy ΔS for the material, with the introduction of the
n vacancies into a material with N lattice sites, can be described by the Boltzmann
relation,

ΔS ¼ KB ln Wð Þ, ð2:27Þ

+
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b

+++
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+ + + + +

+ + + +
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+++

++
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+ + +
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Vacancy

Fig. 2.22 (a) Perfect crystal and (b) crystal with missing atom. Defect shown is usually referred to
as a vacancy
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where W represents to the number of possible distinguishable vacancy locations in
the lattice and KB is Boltzmann’s constant (8.62 � 10�5 eV/K). As can be verified
by inspection, W is given by

W ¼ N!

n! N � nð Þ! : ð2:28Þ

Using Stirling’s approximation,8 one obtains:

ΔG¼ n •ΔE � KBT ln Wb c
¼ n •ΔE � KBT N ln Nð Þ � n ln nð Þ � N � nð Þ ln N � nð Þ½ �: ð2:29Þ

Finding the number of vacancies that will minimize the free energy, we obtain:

∂ ΔGð Þ
∂n

¼ 0 ) n

N � n
¼ exp � ΔE

KBT

� �
: ð2:30Þ

Since we expect that N >> n, then

n

N
� exp � ΔE

KBT

� �
: ð2:31Þ

Therefore, when the material is in equilibrium, the lowest free energy state for the
material occurs when some vacancies/defects exist in the material. If the increase in
energy ΔE (needed to introduce a single vacancy/defect into the lattice) is relatively
small, then the number of vacancies/defects can be significant. Also, as the temper-
ature increases, the number of vacancies/defects in equilibrium will increase. Thus,
we must conclude that while it is theoretically possible to fabricate a perfect material,
it is extremely improbable. The inevitable presence of defects in a material can often
impact/dominate a material’s electrical, mechanical, chemical, and electrochemical
properties. Thus, pre-existing defects in a material can impact the material’s degra-
dation rate and thus device reliability. This is discussed in much more detail in
Chap. 13.

Before leaving this section (on the number of defects needed in a lattice for
equilibrium) it is very important to recognize that a fundamental degradation mech-
anism is at play. If we put a lattice (with an initial equilibrium number of lattice
defects) under stress (mechanical and/or electrical), then the number of defects
needed for the new equilibrium state will increase. This is because the stress tends
to increase the potential energy of the lattice thus making the lattice more unstable.
The increase in lattice potential energy serves to lower the activation energy ΔE
needed for defect formation; and, according to Eq. (2.31), the number of defects in
the new equilibrium state will increase. Therefore, in an effort to relieve lattice stress,

8Stirling’s approximation: ln(m!) � mln(m) - m , where m >> 1.
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more lattice defects will be generated spontaneously in order to bring the stressed
lattice into the new equilibrium state (the state with lowest Gibbs Free Energy).
Stress-induced lattice defect generation is an important degradation mechanism for
the lattice.

9 Nuclide Degradation

In this chapter, the fundamental instability of materials fabricated into metastable
states has been discussed. Before leaving this chapter, the author would be remiss if
another fundamental instability was not discussed—metastable states for nuclides.
Astrophysics tells us that all the elements on earth (both light and heavy elements)
are the result of exploding stars. Since the earth is roughly 4 billion years old, the
very unstable isotopes have long since decayed leaving mostly stable elements
(lucky for us). The stability curve for the elements is shown in Fig. 2.23.

We should recall that attractive forces tend to decrease the potential energy of a
system of particles; repulsive forces tend to increase the potential energy. Since
protons are positively charged, the Coulomb repulsion increases the potential energy
for a collection of protons. However, at very short distances (~femtometer) strong
nuclear attractive forces tend to dominate and this lowers the potential energy thus
making binding of the nucleons possible. The stability of the nucleus is further
enhanced by adding neutrons (neutral charge) to the nucleus. The neutrons tend to
modulate the repulsive Coulomb forces of the protons. The ratio of protons to
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Fig. 2.23 Stable elements are shown with solid curve. Shaded areas indicate nuclide instability
regions. Note that stability for the lighter elements occurs when the number of protons and neutrons
are equal. For heavier elements, stability occurs when the number of neutrons exceeds the number
of protons. However, too many neutrons can also produce nuclide instability
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neutrons needed to produce stability in the nucleus tends to reduce from 1 (for the
lightest elements) to <1 for heavy elements (as shown in Fig. 2.23). However, it is
very important to note that too many neutrons can also produce instability issues for
the nuclides as is shown in the shaded regions for the stability curve.

The above paragraph tends to explain why certain nuclides are stable, so what
produces nuclide instability? First, since protons have like charge, and the repulsive
Coulomb forces are conservative, the potential energy must increase for a collection
protons in nucleus. Second, since the nucleons (protons and neutrons) have a spin of
½ then they are Fermions and the Pauli Exclusion Principle forbids two Fermions
from having the same set of quantum numbers. Thus, the Pauli Exclusion Principle
effectively creates strong repulsion among the nucleons and this serves to raise their
potential energy. Therefore, due to Coulomb interactions and due to the Pauli
Exclusion Principle, added nucleons to the nucleus must go into higher and higher
energy states (states with higher potential energy). Like all metastable states, a rise in
potential energy can make a nucleus less stable.

The shell model of the nucleus (with spin-orbit interaction) is similar to the shell
model of the atom; the ground state of the nucleus (first shell) can contain 2 protons,
2nd shell can contain 6 protons, 3rd shell can contain 12 protons, 4th shell can
contain 8 protons, 5th shell can contain 22 protons, 6th shell can contain 32 protons,
7th shell contains 44, 8th shell contains 58, etc. Similar to atoms, completed shells
tend to be more stable. Therefore, the magic proton numbers for greatest nuclide
stability are: 2, 8, 20, 28, 50, 82, 126, 184, etc., with the appropriate number of
neutrons implied. These magic numbers for protons in the nucleus produce the most
tightly bound nucleus. Thus, these nuclides will have the greatest binding energy
(lowest potential energy) and are therefore very stable.

The binding energy per nucleon is shown in Fig. 2.24. We see that the binding
energy per nucleon tends to reduce for very heavy elements. Another way of viewing
this—the potential energy for the nucleus is increasing due to Coulomb repulsion
and Pauli repulsion, thus making the nucleus less stable.

Finally, let us now explore a fundamental nuclide instability; one that is very
important for nuclear engineering. Consider the reaction whereby an alpha particle
(helium nucleus) slams into a thorium isotope (in an accelerator or within a star),

231
90 Th þ 4

2He ! 235
92 U: ð2:32Þ

As shown in Fig. 2.25, as the alpha particle (Z1 ¼ +2) approaches the thorium
nucleus (Z2¼+90), the work against the Coulomb repulsive conservative force
increases the potential energy of uranium nucleus by,

V rð Þ ¼ Z1Z2
1

4πε0

q2

R

� �
, ð2:33Þ

where q is a positive electronic charge and ε0 is the permittivity of free space. The
nuclear radius R can be approximated by the equation,
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Fig. 2.24 The nuclear binding energy per nucleon in the nucleus. Note that for very heavy elements
(number of nucleons >60), the binding energy per nucleon decreases. An equivalent way of looking
at this—the potential energy per nucleon is increasing as more nucleons are added to higher and
higher energy states
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Fig. 2.25 High energy alpha particle (He nucleus) approaches a relatively heavy nucleus. If the
alpha particle has sufficient energy to overcome the Coulomb barrier, then strong nuclear attractive
forces take over at short distances (r�R), thus binding the alpha particle to the nucleus. Due to the
Pauli Exclusion Principle, the added alpha particle must reside in unoccupied higher energy binding
states for the protons and neutrons. In fact, if the alpha particle in the nucleus is able to reach an
energy level E, it can possibly tunnel back out of the nucleus
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R ¼ 1:1 fmð Þ Z þ Nð Þ1=3: ð2:34Þ

With a thorium nuclear radius of R ¼ 6.75 fm, the impact of the alpha particle
raises the potential energy of the uranium nucleus by at least +43 MeV while the
binding energy (due to nuclear strong forces) is lowered by 4 nuclides �
(�7.5 MeV/nuclide) ¼ �30 MeV. The increase in potential energy has apparently
made the uranium isotope 235U less stable. Furthermore, when a neutron is added to
the 235U, the excess number of neutrons in the nucleus now makes the nucleus very
unstable and it splits. The splitting of the 235U nucleus serves to release an enormous
amount of energy plus additional neutrons. The released neutrons can potentially be
used for a chain nuclear reaction if other 235U nuclei are nearby.
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Chapter 3
Time-Dependence of Materials and Device
Degradation

Degradation is seemingly fundamental to all things in nature. Often this is described
as one of the consequences of the Second Law of Thermodynamics—entropy
(disorder) of isolated systems will tend to increase with time. The evidence for
degradation is apparently everywhere in nature. A fresh coating of paint on a house
will eventually crack and peel. The finish on a new automobile will oxidize with
time. The tight tolerances associated with finely meshed gears will deteriorate with
time. The critical parameters associated with precision semiconductor devices
(threshold voltages, drive currents, interconnect resistances, capacitor leakage,
etc.) will degrade with time. In order to understand the useful lifetime of the device,
it is important to be able to model how critically important materials/device-
parameters degrade with time.

1 Materials/Device Degradation

We are confronted with the apparent truism—regardless of how carefully crafted a
device is at time zero, the materials in the device will degrade with time. The
materials degradation will cause some critically important device parameter S to
shift/degrade with time as illustrated in Fig. 3.1.

As also illustrated in Fig. 3.1, the critical device parameter can be either increas-
ing or decreasing. The device will of course fail when the level of parameter S
degradation becomes too great for the device to properly function. Thus, we have to
accept degradation as an axiom: materials will degrade with time and the materials
degradation will cause important device parameters to shift/degrade. By carefully
recording and modeling the time-dependence of this degradation, a useful device
lifetime can be inferred. Thus, while we cannot stop device degradation, we can
model the degradation to better understand the degradation rate and its impact on
device failure.
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2 Material/Device-Parameter Degradation Modeling

Reliability concerns arise when some critically important material/device-parameter
(e.g., mechanical strength, capacitor leakage, transistor threshold voltage, brake-
lining thickness, etc.) degrades with time. Let S represent a critically important
material/device-parameter.1 Let us assume that S changes relatively slowly over the
lifetime of the material/device. A Taylor expansion about t¼0 produces the
Maclaurin series:

S tð Þ ¼ St¼0 þ ∂S
∂t

� �
t¼0

t þ 1
2

∂2S

∂t2

 !
t¼0

t2 þ : . . . ð3:1Þ

It will be assumed that the higher order terms in the expansion can be approxi-
mated by simply introducing a power-law exponent m and writing the above
expansion in a shortened form:

S ¼ So 1 � Ao tð Þm½ �, ð3:2Þ

t

dS(t)
dt

> 0

dS(t)
dt

< 0

Critical Device
Parameter S
Increases With Time

Critical Device
Parameter S
Decreases With Time

Critical
Device

Parameter

S(t)

S0

Fig. 3.1 Materials degradation in a device can cause a critically important device parameter S to
degrade with time. The parameter S can be increasing or decreasing

1S, as used in this chapter, is a material/device parameter and should not be confused with S used for
entropy in Chap. 2.
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where Ao is a materials/device-dependent coefficient2 and m is the power-law
exponent.3 Both Ao and m are adjustable parameters that can be extracted from
observed parameter-degradation data. For +Ao, the observed parameter S increases
strictly monotonically with time. Whereas, for –Ao, it decreases strictly monotoni-
cally with time.

Either an increase in a critical device-parameter S (increase in threshold voltage of
a semiconductor device, increase in leakage of a capacitor, increase in resistance of a
conductor, etc.) or a decrease in critical-parameter S value (decrease of pressure in a
vessel, decrease of spacing between mechanical components, decrease in lubricating
properties of a fluid, etc.) can eventually lead to device failure. Since device-failure
can result from either increase or decrease of some critically-important materials/
device-parameter S, both cases are discussed.

The power-law degradation equation (Eq. (3.2)) describes strictly monotonic
parameter-degradation. However, as Fig. 3.2 illustrates, the power-law adjustable
parameter “m” in the power-law model permits the model to fit much more compli-
cated degradation.

Power-Law
Approximation

(Strictly Monotonic)

Power-Law
Approximation

(Strictly Monotonic)

t 

dS(t)
dt

> 0

dS(t)
dt

< 0

Critical
Device 

Parameter
Degradation: 

DS
S0

DS
S0

= ±A0(t)m

0

Critical Device
Parameter S Increases
With Time

Critical Device
Parameter S Decreases
With Time

Fig. 3.2 Strictly monotonic time-dependence behavior of the power-law model for degradation

2Note that Ao is positive and must have the units of reciprocal-time to the mth power.
3Equation (3.2) was developed as a series expansion. To be more precise, Eq. (3.2) is an exact
solution to the Euler differential equation: d(ΔS)/dt ¼ m(ΔS/t).
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2.1 Material/Device-Parameter Decreases with Time

Shown in Fig. 3.3 is the observed time-dependence of the degradation for a critical
device-parameter S for three devices.4

Reduction in critically important parameter S can be described by:

S ¼ So 1� Ao tð Þm½ �: ð3:3Þ

Rearranging terms in Eq. (3.3) and taking the logarithm of both sides of the
resulting equation yield,

ln 1� S

S0

� �
¼ m ln tð Þ þ ln Aoð Þ: ð3:4Þ

Using Eq. (3.4), a logarithmic plot for the three devices, shown in Fig. 3.3, is now
re-plotted in Fig. 3.4. Note that the unknown parameters in Eq. (3.3) can now be
easily extracted from such Ln-Ln plots.

Parameter S Decreasing with Time

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
Time (sec)

S/
S o

So

S
= 1 – Ao(t)m

Device #1 #2 #3

Fig. 3.3 Critical material/device-parameter S is observed to reduce with time

4The term device is very general: any apparatus that serves some useful purpose.
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Example Problem: 1
The threshold voltage Vth, for a semiconductor device, was found to degrade
with time t (due to surface inversion) as indicated by the data in the table
below.

Time: t (h) Vth (V)

0 0.750

1 0.728

2 0.723

10 0.710

(a) Find the power-law exponent m which best describes the degradation of
the threshold voltage Vth data versus time.

(b) Find the complete power-law equation that describes the shift in threshold
voltage Vth.

(c) Estimate the value expected for the threshold-voltage after 100 h.

Solution
(a) Inspecting the data, one can see that the device parameter Vth is

decreasing with time. Thus, power-law model, Eq. (3.3), is used:

Vth ¼ Vthð Þo 1� Ao tð Þm½ �:

Rearranging, one obtains:

Vthð Þo � Vth

Vthð Þo
¼ Ao tð Þm:

(continued)

Ln[1 - S/So] =  m Ln(t)  + Ln(Ao)

y1 = 0.5x - 5.2983
y2 = 0.5x - 6.9078
y3 = 0.5x - 7.6009

-8
-7
-6

-5
-4
-3
-2

-1

0

0 2 4 6 8 10 12
Ln(t) 

Ln
[1

-S
/S

o]

Fig. 3.4 Logarithmic plots reveal straight lines with equal slopes m (for the three devices) but each
device has a different pre-factor Ao (Ao is said to be materials/device dependent. Ao variation will
result in a distribution of degradations for the devices, as will be discussed in Chap. 7)
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Taking the logarithm of both sides of the above equation, one obtains:

ln
Vthð Þo � Vth

Vthð Þo

� �
¼ m ln tð Þ þ ln Aoð Þ:

Using the data in the above table, one can add useful columns to the table as
is shown below:

Time: t (h) Vth (V)

Vthð Þo � Vth

Vthð Þo ln(t)
ln

Vthð Þo � Vth

Vthð Þo

� �
0 0.75 0.000

1 0.7275 0.030 0 �3.51

2 0.72324284 0.036 0.693147 �3.33

10 0.70998871 0.053 2.302585 �2.93

Thus, plotting the values in the last two columns on the right side of this
table, one obtains:

y = 0.25x - 3.506

-5.00
-4.50
-4.00
-3.50
-3.00
-2.50
-2.00
-1.50
-1.00
-0.50
0.00

0 0.5 1 1.5 2 2.5

m = 0.25
Ao= exp(-3.506) = 0.03/(hr)0.25

In

In(t)

(Vth)o –Vth

(Vth)o

(a) From the above plot, one can see that the slope (power-law exponent m) is
given by: m ¼ 0.25.

(b) Using Eq. (3.3), the threshold voltage Vth shift/degradation equation is
given by:

Vth ¼ Vthð Þ0 1� A0t
mð Þ ¼ 0:75Vð Þ 1� 0:03

hrð Þ0:25 tð Þ0:25
" #

:

(c) The value of the threshold voltage Vth, after t ¼ 100 h, is expected to be:

Vth ¼ 0:75Vð Þ 1� 0:03

hrð Þ0:25 100hrð Þ0:25
" #

¼ 0:68V :
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2.2 Material/Device-Parameter Increases with Time

As previously mentioned, degradation is not always associated with a decrease in a
critical parameter S.

Device failure can result from an increase in a critically important material/
device-parameter with the increase assumed to be described by:

S ¼ So 1þ Ao tð Þm½ �, ð3:5Þ

where Ao is again a materials/device-dependent coefficient and m is the time-
dependence exponent. Shown in Fig. 3.5 is the time-dependence for the degradation
of three devices due to the increase in magnitude of the critical parameter S.

Rearranging Eq. (3.5) and taking the natural logarithm of both sides of resulting
equation yield,

ln
S

S0
� 1

� �
¼ m ln tð Þ þ ln Aoð Þ: ð3:6Þ

Using Eq. (3.6), the logarithmic plots for the three devices, with increasing
critical parameter S as was shown in Fig. 3.5, are now re-plotted in Fig. 3.6. Note
that the unknown parameters in Eq. (3.5) can be easily extracted from such Ln-Ln
plots.

Parameter S Increasing With Time
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S
= 1+Ao(t)m

Fig. 3.5 Critical materials/device parameter S is observed to increase with time
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Example Problem 2
During a fatigue study, crack propagation occurred in a metal component. The
crack-size was observed to increase with the number of cyclical stress-cycles
Ncyc. The crack-propagation data is shown below in the table.

# Cycles: Ncyc Crack-Size: CS (μm)

0 1

100 2

200 9

300 28

(a) Find the power-law exponent m which best describes the crack-size CS
growth versus number of cycles Ncyc.

(b) Find the complete power-law equation which describes the crack-size CS
versus Ncyc.

(c) What is the expected crack-size CS after 500 cycles?

Solution

(a) Inspecting the data, one can see that the crack-size (CS) is increasing with
time. Thus, power-law Eq. (3.5) is used:

CS ¼ CSð Þo 1þ Ao Ncyc

� �m� 	
:

(continued)

Ln[S/So -1] = m Ln(t) + Ln(Ao)

y1 = 0.5x - 5.2983
y2 = 0.5x - 6.2146
y3 = 0.5x - 6.9078

-8.00
-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

0 5 10 15
Ln (t)

Ln
[S

/S
o 

- 1
]

#1
#2
#3

Fig. 3.6 Ln-Ln plots reveal straight lines with equal slopes m for the three devices, but each device
has a different pre-factor Ao
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Rearranging, one obtains:

CS� CSð Þ0
CSð Þ0

¼ Ao Ncyc

� �m
:

Taking the logarithm of both sides of the above equation, one obtains:

ln
CS� CSð Þ0

CSð Þ0

� �
¼ m ln Ncyc

� � þ ln Aoð Þ:

Using the data in the above table, one can add useful columns to the table as
is shown in the table below.

# Cycles: Ncyc Crack-size: CS (μm)

CS� CSð Þo
CSð Þo ln(Ncyc)

ln CS� CSð Þ0
CSð Þo

h i
0 1 0

100 2 1 4.605 0.000

200 9 8 5.298 2.079

300 28 27 5.704 3.296

Plotting the values in the last two columns, on the right side, of the above
table, one obtains:

y = 3.00x -13.82

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

3.000 3.500 4.000 4.500
ln(Ncyc)

ln
CS–(CS)0

(CS)o

5.000 5.500 6.000

m = 3.00
Ao = exp(-13.82) =1.0x10-6

(a) From the above plot, one can see that the slope (power-law exponent m) is
given by: m ¼ 3.

(continued)
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(b) The crack-size CS increase, Eq. (3.5), is given by:

CS ¼ CSð Þ0 1þ A0 Ncyc

� �m� � ¼ 1μmð Þ 1þ 1x10�6

cycleð Þ3 Ncyc

� �3" #
:

(c) The value of the crack-size CS, after 500 cycles, is expected to be:

CS ¼ 1μmð Þ 1þ 1x10�6

cycleð Þ3 500 cyclesð Þ3
" #

¼ 126μm:

3 General Time-Dependent Degradation Models

There are many time-dependent forms for degradation. However, generally, one of
the following three forms is used: power-law, exponential, or logarithmic. These
three forms were selected because they tend to occur rather frequently in nature. The
power-law is clearly the more frequently used. If, however, a power-law model gives
a rather poor fit to the degradation data, then perhaps the other two models should be
investigated. The three degradation models are shown in Table 3.1, as well as how
the model parameters can be easily extracted from the observed degradation data.

4 Degradation Rate Modeling

The power-law model is one of the most widely used forms for time-dependent
degradation. For this reason, special attention is given to this model. For conve-
nience of illustration, let us assume that the critical parameter S is decreasing with
time and that Ao ¼ 1. Then Eq. (3.3) reduces to:

S∗ ¼ 1� S

So
¼ tð Þm: ð3:7Þ

In Fig. 3.7 one can see the usefulness and flexibility of the power-law time-
dependent model. Note that for m ¼ 1, one will see the expected linear degradation
relationship. For m < 1, one can see the tendency for the degradation to saturate for
long times. However, for m > 1, the degradation increases strongly with time and
with no evidence of saturation effects.

The degradation rate is better emphasized when the actual degradation rate R
equation is used:

R ¼ dS∗

dt
¼ m tð Þm�1: ð3:8Þ
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The degradation rate, for several values of m, is shown in Fig. 3.8. Note that when
m ¼ 1, a constant degradation rate is expected. For m < 1, a decreasing degradation
rate is expected. For m > 1, an increasing degradation rate is expected. For a
decreasing degradation rate, there is at least some hope that the degradation may
saturate before causing material/device-failure. For a constant degradation rate, the
time-to-failure is easily predicted. For an increasing degradation rate, the degrada-
tion is ever increasing, eventually leading to a catastrophic condition. Thus, of the
three degradation rate conditions (decreasing, constant, increasing), each of which
can produce failure, the increasing degradation rate is clearly the most worrisome.

Table 3.1 Selected time-dependent degradation models

S* = 1- S/So = (t)m

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12
Time (arbitrary units)

S*

m = 0.5

m = 1

m = 1.5

Fig. 3.7 Power-law time-dependent degradation model: (a) for m ¼ 1, (b) m < 1, and for m > 1
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Example Problem 3

(a) In Example Problem 1, it was determined that the threshold-voltage
parameter for a semiconductor device was degrading (decreasing) with
time. Is the degradation rate, for the threshold-voltage parameter Vth,
increasing or decreasing with time?

(b) In Example Problem 2, it was determined that the crack-size parameter for
a metal component was degrading (increasing) with the number of cyclical
stress-cycles. Is the degradation rate, for the crack-size CS parameter,
increasing or decreasing with the number of cycles.

Solution

(a) It was determined, in Example Problem 1, that the threshold voltage Vth

parameter was decreasing with time according to the equation:

Vth ¼ Vthð Þ0 1� A0t
mð Þ ¼ 0:75Vð Þ 1� 0:03

hrð Þ0:25 tð Þ0:25
" #

:

Since the exponent for the degradation is m ¼ 0.25 (less than 1), then,
according to Eq. (3.8), or Fig. 3.8, the degradation-rate for the threshold-
voltage parameter is decreasing with time.

(continued)
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R
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e 
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*/d

t

m = 0.5

m = 1

m = 1.5
= (t)m1 –

= m(t)m–1
dt

dS*
R =

So

SS* =

Fig. 3.8 Degradation rate as predicted by the power-law model: (a) m ¼ 1, (b) m < 1, and (c) m > 1.
One can see that m¼ 1 produces a constant degradation rate. m < 1 produces a decreasing degradation
rate. Whereas, m > 1 produces an increasing degradation rate
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(b) It was determined, in Example Problem 2, that the crack-size parameter
was increasing with time according to the equation:

CS ¼ CSð Þ0 1þ A0 Ncyc

� �m� � ¼ 1μmð Þ 1þ 1x10�6

cycleð Þ3 Ncyc

� �3" #

Since the exponent for the degradation is m ¼ 3 (greater than 1), then,
according to Eq. (3.8), or Fig. 3.8, the degradation-rate (crack growth-rate) is
increasing (in fact, strongly increasing) with time.

5 Delays in the Start of Degradation

Sometimes materials/devices will be remarkably stable for a period of time t0 and
then show relatively rapid degradation with time. Examples of this include: a tire that
holds stable pressure until a nail punctures the tire, the resistance of a metal
conductor is stable until a void starts to forms, the fuel efficiency of an engine
until the fuel injector starts to clog, an air-conditioner compressor that works fine
until a leak in the coolant system develops, etc. Sometimes, it can be extremely
important to be able to identify precisely when the degradation started.5

If a time-delay t0 exists, before the start of degradation for the important material/
device parameter S, then one can write the degradation equation as:

S ¼ S0 for t � t0ð Þ
S ¼ So 1� A0 t � t0ð Þm½ � for t � t0ð Þ: ð3:9Þ

In the above equation, the + sign is used when S increases with time whereas the –
sign is used when S decreases with time. Equation (3.8) is very useful in determining
the precise time that the instability started. The degradation rate R equation can be
used to help pin-point t0, the time at which degradation actually started. Taking the
derivative of Eq. (3.9) one obtains:

R1 ¼ dS

dt
¼ 0 for t � t0ð Þ

R2 ¼ dS

dt
¼ �ð ÞmSoA0 t � t0ð Þm�1 for t � t0ð Þ:

ð3:10Þ

5If significant degradation (but not failure) started in the warrantee period, does one have a claim?
Sometimes, it can be very important to be able to identify the onset of degradation.
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Note that:

(a) if m > 1, then R2 goes to zero at t ¼ t0 ;
(b) if m ¼ 1, then R2 is a constant; and
(c) if m < 1, then R2 goes to infinity at t ¼ t0.

One can see from the above equations that the rate/slope R of the degradation can
be used to find the time-delay t0. If one plots the observed degradation rate R versus
time t, then the time at which the rate R goes to zero, or R goes to infinity, is t¼ t0. If
R goes to zero, or infinity, at t ¼ 0, then t0 ¼ 0 and a time-delay is not needed in the
degradation equation. The power-law model with a time-delay t0, as well as other
models, are shown in Table 3.2.

Example Problem 4
The fuel efficiency for a new auto remained very stable during the first
12 months of use. However, after about 1 year of use, a measureable degra-
dation occurred in the efficiency (Eff) as is shown in the below table.

Time (mo) Efficiency (MPG) Time (mo) R¼d(Eff)/dt (MPG/Mo)

0 22.00

2 22.00

4 22.00

6 22.00

(continued)

Table 3.2 Delayed start (to) degradation models
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8 22.00

10 22.00

12 22.00

14 21.75 13 �0.1264

16 21.42 15 �0.1639

18 21.06 17 �0.1819

20 20.67 19 �0.1947

22 20.26 21 �0.2048

24 19.83 23 �0.2132

(a) Pinpoint the time t0 that the degradation actually started.
(b) Determine the power-law equation which best-fits the efficiency versus

time for the full 24 months of use.

Solution
The observed degradation rate R is shown in the below graph.
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M
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(a) One can see from the above plot, of degradation rate R versus time, that
degradation rate R goes to zero at t ¼ t0 ¼ 10.5 months.6

(b) Now that the value of the time-delay t0¼10.5 months has been determined,
then one can proceed with finding the best fit parameters (m,A0) as
follows:

Eff ¼ Effð Þo 1� A0 t � 10:5Moð Þm½ � for t � 10:5Moð Þ:

(continued)

6Note that even though the degradation started at 10.5 months, the degradation at 12 months is so
small that it went undetected by the measuring instrument.
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Rearranging and taking the logarithm of both sides, one obtains:

ln
Effð Þ0 � Eff

Effð Þ0

� �
¼ m ln t � 10:5Moð Þ þ ln A0ð Þ:

The plot of the data is shown in the graph below.

y = 1.58x - 6.39
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Ao = exp(-6.39)
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= 1.68x10-3/(Mo)1.58
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Therefore, the power-law equation, with time-delay, that best-fits the fuel
efficiency data is:

Eff ¼ 22:0 for t � 10:5Moð Þ
Eff ¼ 22:0ð Þ 1� 1:68x10�3

Moð Þ1:58 t � 10:5Moð Þ1:58
" #

for t � 10:5Moð Þ

The plot of the data, and the modeled fit to the data, are shown in the graph
below.
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(continued)
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Example Problem 5
In semiconductor processing, yield (number of electrically good chips on a
Si-wafer divided by the total number of chips on a wafer) is a key manufactur-
ing parameter. The yield data is shown below for several weeks. Using the
yield-degradation rate, pinpoint when the yield degradation started.

Time (week) Yield (%)

1 68.2

2 67.2

3 68.2

4 67.2

5 68.2

6 67.1

7 65.0

8 64.0

9 60.0

10 55.5

11 53.0

12 48.5

Solution
To find the rate of yield degradation, additional columns are added to the table
as is shown below.

Time (week) Yield (%) Time (week) R¼d(Yield)/dt (%/Wk)

1 68.2

2 67.2 1.5 �1.00

3 68.2 2.5 1.00

4 67.2 3.5 �1.00

5 68.2 4.5 1.00

6 67.1 5.5 �1.10

7 65.0 6.5 �2.10

8 64.0 7.5 �1.00

9 60.0 8.5 �4.00

10 55.5 9.5 �4.50

11 53.0 10.5 �2.50

12 48.5 11.5 �4.50

(continued)
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The plot of the yield-degradation rate is shown below.
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One can see that while the degradation rate shows fluctuation from week to
week, the average degradation rate was nearly constant through the first five
weeks. Between weeks 5 and 7, the average degradation rate changed with
time. This helps to pinpoint the time that some process step(s) started to go out
of control.

6 Competing Degradation Mechanisms

Competing mechanisms (one mechanism is driving an increase in the critical
parameter S while the other mechanism is driving a reduction in S) can also occur.
This can be described in by the equation:

S ¼ So 1þ Ao tð Þm1½ � 1� Bo tð Þm2½ �, ð3:11Þ
where the first term on the right of the above equation is tending to increase the
parameter S while the second term on the right is trying to decrease the parameter
S. These mechanisms are competing and can produce either a maximum or mini-
mum in the degradation, as is illustrated in Fig. 3.9.

In Fig. 3.9, a maximum occurs in the critical parameter S/So because of the
dominance of the increasing mechanism initially, then the dominance of decreasing
mechanism during the later stages.7 If the roles are reversed, the decreasing term

7An example of competing mechanism comes from the joining/bonding of dissimilar materials.
During the bonding of dissimilar metals at high temperatures, inter-diffusion of the two materials is
usually required in order to establish good bonding. Initially, this inter-diffusion of materials will
cause an increase in bonding strength. However, often during the later stages of inter-diffusion, the
bond strength can start to weaken due to Kirkendall voiding.
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dominates initially, then the increasing term dominates during the later stages of
parameter degradation, and then a minimum will be observed.

Table 3.3 indicates a method that is sometimes useful in separating the problem
into early stages of degradation versus the later stages of degradation. If the
strengthening term dominates the early stages while the later stages are dominated
by the weakening term, then the model parameters can easily be extracted.
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S = So[1 + Ao(t)m1][1 – Bo(t)m2]
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m2 = 0.5
Ao = 7.00E-03
Bo = 9.00E-04

Increasing
Mechanism

Decreasing
Mechanism

Fig. 3.9 Maximum or minimum in the degradation parameter S/So is generally indicative of
competing mechanisms: one mechanism driving an increase in S and the other driving a decrease
in S

Table 3.3 Model parameter extraction method (competing mechanisms)
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Problems

1. The threshold voltage Vth for a semiconductor device was observed to degrade
with time. The degradation data is shown in the table.

Time (h) Vth (V)

0 0.40

1 0.42

10 0.44

100 0.48

(a) Find the power-law equation which best-fits the threshold voltage Vth versus
time data.

(b) What is the expected value of the threshold voltage Vth after 1000 h?
(c) Is the degradation rate increasing or decreasing with time?

Answers:

(a) Vth ¼ 0:40V 1þ 0:05

hrð Þ0:3 tð Þ0:3
" #

(b) Vth(t ¼ 1000hr) ¼ 0.56V

(c) Since m ¼ 0.3(<1), then degradation rate is decreasing with time.

2. The pressure P of a tire is found to degrade with time according to the table
shown.

Time (day) P (lb/in2)

0 32.00

1 30.72

2 30.06

3 29.53

(a) Find the power-law equation which best-fits the Pressure P versus time data.
(b) What is the expected value of the Pressure P after 10 days?
(c) Is the degradation rate for the Pressure P increasing or decreasing with

time?

Answers:

(a) P ¼ 32 lb=in2
� �

1� 0:04

dayð Þ0:6 tð Þ0:6
" #

(b) P(t ¼ 10day) ¼ 26.9lb/in2

(c) Since m ¼ 0.6(<1), then degradation rate is decreasing with time.
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3. A current flows through a precision resistor and it is noted that the value of
resistance R for the resistor degrades with time according to the data in the
table.

Time (h) R (Ω)
0 10.00

1 10.02

5 10.22

10 10.63

(a) Find the power-law equation which best-fits the resistance R versus time.
(b) What is the expected value of the resistance R after 100 h?
(c) Is the degradation rate for the resistance R increasing or decreasing with

time?

Answers:

(a) R ¼ 10:00 ohmð Þ 1þ 0:002

hrð Þ1:5 tð Þ1:5
" #

(b) R(t ¼ 100hr) ¼ 30.00ohm
(c) Since m ¼ 1.5(>1), then degradation rate is increasing with time.

4. A metal component is corroding/oxidizing with time. The metal-oxide thickness
with time is shown in the table.

Time (year) Oxide thickness Tox (μm)

0 1.00

1 1.90

2 2.27

3 2.56

(a) Find the power-law equation which best-fits the oxide-thickness Tox

versus time.
(b) What is the expected value of the oxide-thickness Tox after 10 years?
(c) Is the degradation rate for the oxide-thickness Tox increasing or decreasing

with time?

Answers:

(a) Tox ¼ 1:00 μmð Þ 1þ 0:9

yrð Þ0:5 tð Þ0:5
" #

(b) Tox(t ¼ 10yr) ¼ 3.85μm
(c) Since m ¼ 0.5(<1), then degradation rate is decreasing with time.
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5. The prostate-specific antigen (PSA) test is routinely used to detect the possibility
of prostate cancer. The absolute level of the PSA is expected to be <4.0 ngm/ml,
but the rate of change is also important. Below are the hypothetical PSA levels
for a patient over a three-year period. The absolute PSA level is less than
4.0 ngm/ml, but is the rate a concern?

(a) Find the power-law model which best-fits the increase in PSA versus
time data.

(b) Is the increase in PSA occurring at an increasing or decreasing rate?

Time (year) PSA (ngm/ml)

0 1

1 1.1

2 1.4

3 1.9

Answers:

(a) PSA ¼ PSAð Þ0 1þ A0 tð Þm½ � ¼ 1:0ngm=mlð Þ 1þ 0:1

yrð Þ2 tð Þ2
" #

(b) Since m ¼ 2 (>1), the rate of increase for the PSA is very strong and should
be noted to the physician.

6. For our nervous system to work properly, the nerve cell must be able to generate
a potential difference of about 50mV. This is done through the differential
diffusion rates of sodium (Na-ions) and potassium (K-ions). The ratio of the
Na to K in our body is typically (Na/K)¼ 31.93. If this ratio drops to 25.47, then
heart issues (e.g., atrial fibrillation) can sometimes occur.

Time (year) (Na/K) ratio

0 31.97

1 31.61

2 31.56

3 31.43

(a) Find the power-law model which best-fits the reduction in (Na/K) ratio
versus time data.

(b) Is the decrease of the (Na/K) ratio occurring at an increasing or decreasing
rate?

Answers:

(a)
Na

K

� �
¼ Na=Kð Þ0 1� A0tmð Þ ¼ 31:97ngm=mlð Þ 1� 0:01

yrð Þ0:4 tð Þ0:4
" #

(b) Since m ¼ 0.4 (<1), the rate of reduction is decreasing with time.
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7. The size of an inoperable brain tumor was monitored for 3 months preceding the
use of an experimental drug and for 3 months post drug use. The data is shown
below.

(a) What is the power-law equation that describes tumor growth prior to
experimental drug use?

(b) What is the power-law equation that describes tumor growth versus time
after experimental drug use.

(c) Take the ratio of the two growth rates to see if the experimental drug was
effective at reducing the tumor growth rate.

Time (mo) Tumor size: S (cm)

0 1.00

1 1.10

2 1.20

3 1.30

Drug introduction

3 1.30

4 1.43

5 1.48

6 1.52

Answers:

(a) Sbefore drug ¼ 1:00cmð Þ 1þ 0:1
Moð Þt

� �

(b) Safter drug ¼ 1:30cmð Þ 1þ 0:1

Moð Þ0:5 t � 3Moð Þ0:5
" #

t � 3Moð Þ

(c)
Rafter

Rbefore
¼ dSafter=dt

dSbefore=dt
¼ 0:65 Moð Þ0:5

t � 3Moð Þ0:5 t � 3Moð Þ

Note that in the 4th month, after the drug was introduced, the tumor growth
rate was 65% of what it would have been without the drug. In the 5th month,
the tumor growth rate is 46% of what it would have been if no drug was
introduced.

8. The pressure P of a toxic gas, in a very large storage vessel, was monitored every
month during its 12 month storage and the results are shown below.

(a) Pinpoint the month that a leak started to occur, causing a gradual release of
the gas.

(b) What is the power-law equation that best-fits the degradation data?
(c) Children, in a nearby school, had a mysterious illness in month 3. Could this

have been due to the gas leak?
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Time (mo) Pressure: P (atm)

0 5.0

1 5.0

2 5.0

3 5.0

4 5.0

5 5.0

6 5.0

7 5.0

8 4.9

9 4.7

10 4.4

11 4.0

12 3.5

Answers:

(a) t0 ¼ 6.6 months.
(b) P ¼ 5:0atm t � 6:6Monthsð Þ

P ¼ 5:0atm 1� 1:03x10�2

Moð Þ2:0 t � 6:6Moð Þ2:0
" #

t � 6:6Monthsð Þ

(c) The gas leak did not start until month 6.6. The illness of the children at the
local school occurred in month 3.

9. Nuclear decay from a radioactive material exhibits the decay characteristics:

N

N0
¼ exp � 6:93x10�3

hr

� �
t

� �
:

(a) Plot the exponential decay function through the first 100 h.
(b) Find the best-fit power-law model to this exponential function through the

first 100 h.
(c) Plot both the exponential and the best-fit power-law model and compare the

plots through 100 h.

Answer:

(b)
N

N0
¼ 1� 0:00941

hrð Þ0:871 tð Þ0:871
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10. In semiconductor processing, yield (number of electrically good chips on a
wafer divided by the total number of chips on a wafer) is a key manufacturing
parameter. The yield data is shown below for several weeks. Using the yield-
degradation rate, when did the yield start to degrade?

Time (week) Yield (%)

1 52.1

2 52.6

3 52.1

4 51.6

5 52.2

6 51.7

7 52.2

8 51.9

9 51.3

10 50.4

11 49.2

12 47.7

Answer: Yield started to degrade between weeks 6 and 8.

11. Thermo-sonic Au ball-bonding to aluminum pads is a common attachment pro-
cess for silicon chips. If these bonds are stored at high temperatures (>150

�
C),

one can observe competing mechanisms: inter-diffusion of the two elements
tending to strengthening the bonds initially but Kirkendall voiding tends to
weaken the bonds during longer storage times. The bond-strength S data is
shown versus the storage time at high temperature in the below table.

Determine the degradation equation for the ball bonds shown.

Time (s) Bond strength: S (gm-f)

0.00 � 10 20.00

1.00 � 10 20.01

1.00 � 101 20.03

1.00 � 102 20.10

1.00 � 103 20.31

1.00 � 104 20.90

1.00 � 105 22.16

2.00 � 105 22.47

4.00 � 105 22.32

6.00 � 105 21.75

8.00 � 105 20.94

1.00 � 106 20.00

2.00 � 106 14.14

2.20 � 106 12.83

2.30 � 106 12.17

(continued)
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Time (s) Bond strength: S (gm-f)

2.40 � 106 11.49

2.50 � 106 10.81

2.60 � 106 10.12

2.70 � 106 9.43

2.80 � 106 8.73

3.00 � 106 7.32

4.00 � 106 0.00

Answer:

S ¼ 22:00gm • fð Þ 1þ 1x10�3

secð Þ0:5 tð Þ0:5
" #

1� 5x10�4

secð Þ0:5 tð Þ0:5
 !" #

12. Ametal-oxide thicknessToxwas found to take a logarithmic growth functional form:

Tox

Toxð Þ0
¼ 1þ ln

1x10�2

hr

� �
t þ 1

� �

(a) Plot the logarithmic growth function through the first 100 h.
(b) Find the best-fit power-law model to this logarithmic growth function

through the first 100 h.
(c) Plot both the logarithmic and the best-fit power-law model and compare the

fits through the first 100 h.

Answer:

(b)
Tox

Toxð Þ0
¼ 1þ 0:0138

hrð Þ0:858 t
0:858
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Chapter 4
From Material/Device Degradation
to Time-to-Failure

In Chap. 3, it was suggested that material/device degradation will occur with time
and that this continuing degradation will eventually cause device failure. Methods
were presented in Chap. 3 which can be used for modeling the time-dependence of
degradation. The question that we would like to address in this chapter is—how does
one go from the time-dependence of degradation to the time-to-failure for the
device? The time-to-failure (TF) equations are critically important, for device failure
mechanisms, and will be the focus of the remaining chapters in this book.

1 Time-to-Failure (TF)

TF occurs when an important material/device parameter degrades to a point that the
device can no longer function properly in its intended application. For an electronic
device, this could be the time associated with a 10 % reduction in circuit speed,
relative to its initial (time-zero) value. For an automobile tire, this could be the time
required for the tire tread to reach 10 % of its original (time-zero) value.

In Chap. 3 it was learned that the degradation of an important material/device
parameter S could be modeled with a power-law equation:

S ¼ So 1� Ao tð Þm½ �: ð4:1Þ

Plus sign (+) is used when the parameter S increases with time while the minus
sign (�) is used when the parameter S decreases with time. Solving for time, one
obtains:

t ¼ 1
�Ao

S� So
So

� �� �1=m
: ð4:2Þ
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Time-to-failure (t ¼ TF) occurs when the material/device parameter shifts by
some critical amount such that the device no longer functions properly:

TF ¼ 1
�A0

S� S0
S0

� �
crit

� �1=m
ð4:3Þ

One can see, from Eq. (4.3), that the TF increases as the critical amount of
allowed parameter degradation increases. Also, TF increases as the exponent
m decreases. Note that TF goes to infinity as m goes to zero. Recall that m ¼
0 means that no degradation is occurring with time, thus TF goes to infinity.

Shown in Fig. 4.1 is a parameter S that is decreasing with time. TF occurs when
parameter reaches some critical level.

Example Problem 1
In Example Problem 1 in Chap. 3, the important threshold Vth parameter for a
semiconductor device was found to decrease/shift according to the power-law
equation:

V th ¼ V thð Þ0 1� A0t
mð Þ ¼ 0:75Vð Þ 1� 0:03

hð Þ0:25 tð Þ0:25
" #

:

Assuming that the maximum threshold voltage Vth shift that one can
tolerate is 20 %, before device failure occurs, then what is the TF?

(continued)
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Fig. 4.1 Time-to-failure depends on the amount of degradation that can be tolerated in some
critically important material/device parameter S. Note that for a 20 % decrease in the critically
important material/device parameter S, (S/S0¼ 0.8), the time-to-failure will be different for the three
devices versus what it would be for 60 % decrease
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Solution
Since the threshold voltage Vth is an important decreasing device parameter,
then Eq. (4.3) gives the TF:

TF ¼ 1
A0

V thð Þ0 � V th

V thð Þ0

� �
cnt

� �1=m

This equation becomes:

TF¼ 1

0:03= hð Þ0:25
V thð Þ0 � 0:8 V thð Þ0

V thð Þ0

� �
crit

" #1=0:25

¼ 0:2

0:03= hð Þ0:25
" #4

¼ 1, 975:3h:

In summary, it will take approximately 1,975 h for this device parameter
Vth to decrease/shift by 20 % and to cause device failure.

Shown in Fig. 4.2 is an important material/device parameter S that is increasing
with time. TF occurs when the degradation reaches a critical level.
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Fig. 4.2 Time-To-Failure depends on the amount of degradation that can be tolerated in some
critically important material/device parameter S. Note that for a 100 % increase in the critically
important parameter S (S/S0 ¼ 2) the time-to-failure will be different for the three devices versus
what it would be for 50 % increase in S, (S/S0 ¼ 1.5)
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Example Problem 2
In Example Problem 2 in Chap. 3, the important reliability parameter was
crack-size (CS) and the crack-size was found to increase with the number of
cyclical-stressing cycles Ncyc according to the power-law equation:

CS ¼ CSð Þ0 1þ A0 Ncyc
� �m� 	 ¼ 1μmð Þ 1þ 1� 10�6

cyc1eð Þ3 Ncyc
� �3" #

:

Assuming that the maximum CS can increase by 500 times its original
value before the device fails, what is the expected number of cycles-to-failure?

Solution
Since the CS was found to increase with the number of cyclical-stress cycles,
then Eq. (4.3) gives the cycle-to-failure CTF:

CTF ¼ 1
A0

CS� CSð Þ0
CSð Þ0

� �
cnt

� �1=m
:

This equation becomes:

CTF¼ 1

1� 10�6= cycð Þ3
500 CSð Þ0 � CSð Þ0

CSð Þ0

� �
cnt

" #1=3

¼ 499

1� 10�6= cycð Þ3
" #1=3

¼ 793:2cycles:

In summary, it will take approximately 793 cycles of cyclical stress for the
initial CS (1 μm) to propagate to a CS of 500 μm and to cause failure.

2 Time-to-Failure Kinetics

In Chap. 3, we discussed the fact that the above degradation parameter A0 is, in
general, material/microstructure dependent and this can lead to TF values which are
device-dependent (as illustrated in Figs. 4.1 and 4.2). However, there are also other
very important properties of A0 (such as its stress and temperature dependence) that
we have not yet discussed.1

It is common experience that electrical devices tend to degrade faster as the
voltage V and/or temperature T increases. In this case, the degradation parameter

1A more detailed discussion of degradation kinetics is found in Chap. 9.
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A0 is not only a function of material variations but also a function of the applied
voltage and the use temperature: A0 ¼ A0(V, T ). It is also common experience that
mechanical devices tend to degrade faster as the mechanical stress σ and the
temperature T increases. In this case, A0 is not only a function of materials variations
but also the applied mechanical stress σ and the use temperature T: A0 ¼ A0(σ, T ).

Seldom are devices purely electrical or purely mechanical; they can be more
accurately described as electro-mechanical devices. Therefore, for electromechani-
cal devices, the relationship between TF and parameter S degradation is given by:

TF ¼ 1
�A0 V ; σ; Tð Þ

S� S0
S0

� �
crit

� �1=m
: ð4:4Þ

Plus sign (+) is used for an increasing parameter S and minus sign (-) is used for a
decreasing parameter S. One can see, from Eq. (4.4), that TF kinetics (voltage, stress,
and temperature dependence) may not have a simple inverse relation with degrada-
tion kinetics contained in the degradation parameter A0(V, σ, T ). In fact, only for the
special case of m ¼ 1 (constant degradation rate), will TF have a simple inverse
relationship with the degradation parameter A0(V, σ, T ). Therefore, while a critical
amount of degradation (ΔS/S0)crit is necessary to produce device failure, one should
not expect the TF equation TF(V, σ, T ) to necessarily have a simple inverse relation
with the degradation kinetics contained in A0(V, σ, T ).

Problems

1. The threshold voltage Vth for a semiconductor device was found to degrade
according to the power-law equation:

V th ¼ 0:40V 1� 0:05

hð Þ0:3 tð Þ0:3
" #

:

Find the time required for threshold voltage to increase by 10 %.

Answer: Time required ¼ 10.1 h.

2. The pressure P in a tire was found to degrade according to the power-law
equation:

P ¼ 32 1b=in2
� �

1� 0:04

dayð Þ0:6 tð Þ0:6
" #

:

Find the time required for the pressure P to degrade to 16 lb/in2.

Answer: Time required ¼ 67.3 days.
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3. A current flowing through a precision resistor causes the resistance R to rise
according to the power-law equation:

R ¼ 10:00 Ωð Þ 1þ 0:002

hð Þ1:5 tð Þ1:5
" #

:

Find the time required for the resistance to increase by 10 %.

Answer: Time required ¼ 13.6 h.

4. A metal component was corroding/oxidizing according to the power-law
degradation:

Tox ¼ 1:00 μmð Þ 1þ 0:9

yearð Þ0:5 tð Þ0:5
" #

:

Find the time required for the oxide-thickness to increase to 3 times its
original thickness.

Answer: Time required ¼ 4.9 years.

5. The prostate-specific antigen (PSA) values for a certain patient were found to
increase according to:

PSA ¼ 1:0ngm=mlð Þ 1þ 0:1

yearð Þ2 tð Þ2
" #

:

Find the time required for the PSA level to reach 4.0 ngm/ml.

Answer: Time required ¼ 5.5 years.

6. The ratio of the Na to K in a certain patient’s blood was described by:

Na
K

� �
¼ Na

K

� �
0

1� A0t
mð Þ ¼ 31:93ð Þ 1� 0:01

yearð Þ0:4 tð Þ0:4
" #

:

Find the time required for the ratio to degrade to 30.00.

Answer: Time required ¼ 90 years.

7. The size of an inoperable brain tumor was found to increase, according to the
power-law equation:

S ¼ 1:30cmð Þ 1þ 0:1

M0ð Þ0:5 tð Þ0:5
" #

:

Find the time required for the tumor to grow in size to 1.6 cm.

Answer: Time required ¼ 5.3 months.
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8. The pressure P of a gas in a vessel was found to degrade according to the power-
law model:

P ¼ 5:0atm t � 6:6monthsð Þ
P ¼ 5:0atm 1� 1:03� 10�2

Moð Þ2:0 t � 6:6Moð Þ2:0
" #

t � 6:6monthsð Þ:

Find the time required for the pressure to reduce by 5 % of its original value.

Answer: Time required ¼ 8.8 months.

9. Bond strengths of thermo-sonic bonded Au balls to aluminum pads were found
to degrade according to the equation:

S ¼ 20:00g� fð Þ 1þ 1� 10�3

sð Þ0:5 tð Þ0:5
" #

1� 5� 10�4

sð Þ0:5 tð Þ0:5
 !" #

Find the time required for the bond-strength to reduce to 50 % of its original
value.

Answer: Time required ¼ 2.6�106 s.

10. Nuclear decay from a radioactive material exhibited the decay characteristics:
(a)

N

N0
¼ exp � 6:93� 10�3

h

� �
t

� �
:

The nuclear decay can be approximated by the power-law: (b)

N

N0
¼ 1� 0:00941

hð Þ0:871 tð Þ0:871:

Using models (a) and (b), find the time required for the material to reduce to
50 % of its original value.

Answers:

(a) Exponential Model: Time required ¼ 100 h.
(b) Power-Law Model: Time required ¼ 96 h.

11. A metal-oxide thickness Tox was found to increase in a logarithmic manner
according to:

(a)
Tox

Toxð Þ0
¼ 1þ ln

1� 10�2

h

� �
t þ 1

� �
:

The growth can also be approximated by the power-law:

(b)
Tox

Toxð Þ0
¼ 1þ 0:0138

hð Þ0:858 t
0:858:

Problems 65



Find the time required, using both models, for the oxide thickness to increase
to 2 times its original value.

Answers:

(a) Logarithmic Model: Time required ¼ 172 h.
(b) Power-Law Model: Time required ¼ 147 h.

66 4 From Material/Device Degradation to Time-to-Failure



Chapter 5
Time-to-Failure Modeling

All materials tend to degrade, and will eventually fail, with time. For example,
metals tend to creep and fatigue; dielectrics tend to trap charge and breakdown;
paint tends to crack and peel; polymers tend to lose their elasticity and become more
brittle, teeth tend to decay and fracture; etc. All devices (electrical, mechanical,
electromechanical, biomechanical, bioelectrical, etc.) will tend to degrade with time
and eventually fail. The rate of degradation and eventual time-to-failure (TF) will
depend on the electrical, thermal, mechanical, and chemical environments to which
the device is exposed.

1 Flux-Divergence Impact on Time-to-Failure

In the case of metals, due to the extended nature of the valence-electron wave
functions forming metallic bonds, the bonding of the atoms is relatively independent
of the exact location of individual metal ions. This is the reason that metals tend to
have ductile and malleable properties. Therefore, it is relatively easy for the metal
ions to flow under the presence of an external force. While metal ion movement is
necessary for failure, it is not sufficient. For a material to degrade, and eventually
fail, a flux divergence in the particle transport is required as illustrated in Fig. 5.1.

By flux divergence, we mean that the flux of particles (number of particles per
unit area per unit time) flowing into a region must be greater than or less than the flux
of particles leaving the region. A region of voiding or accumulation is depicted in
Fig. 5.1 and occurs because of a flux divergence in the particle transport process.
This depiction could represent electromigration (EM)-induced voiding leading to an
open circuit failure, a buildup of chlorine ions on a bond pad leading to corrosion
failure, or the trapping of electrons or holes in a dielectric leading to dielectric
breakdown. The flux divergence can be described by Fick’s Second Law (which is a
statement of the conservation of mass),
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~∇ � ~J x; tð Þ ¼ �∂ρ x; tð Þ
∂t

, ð5:1Þ

where J(x, t) represents the particle flux at the specified coordinates x (¼ x1, x2, x3)
and time t, and ρ(x, t) represents the density of such particles. Integrating both sides
over the observation volume V and then using the divergence theorem,1 one can
express Eq. (5.1) in integral form,

Z
~J � d~A ¼ � dN tð Þ

dt
, ð5:2Þ

where N represents the total number of particles contained in the volume V of interest
which is bounded by a closed surface of area A.

In analogy with reaction-rate theory, it is convenient to think of the voiding
(or accumulation) in terms of a reaction-rate equation,

dN tð Þ
dt

¼ �k tð ÞN tð Þ, ð5:3Þ

where k(t) is the reaction-rate constant for failure. Comparing Eqs. (5.2) and (5.3),
one obtains a relationship between the reaction-rate constant and the flux
divergence,

k tð Þ ¼
R
~J x; tð Þ � d~A
N tð Þ : ð5:4Þ

In this text, the reaction-rate constant,2 given by Eq. (5.4), will be referred to as a
degradation-rate constant. One can see clearly that the degradation-rate constant is

Fig. 5.1 Material degradation (voiding or accumulation of material is shown in darker region of
volume V of interest) occurs due to a flux divergence. Jin represents the flux of particles into the
volume V of interest and Jout represents the flux of particles out. The volume V of interest is bounded
by a surface of area A. Flux divergence occurs if Jin 6¼ Jout

1The divergence theorem states that:
Z
V

~∇ � ~J dV ¼
Z
A

~J � d~A, where V is the volume of interest

which is bounded by a surface of area A.
2The reaction-rate constant, in many cases, may not really be constant. It may, in general, be a
function of time.
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directly proportional to the net flux of particles crossing the boundary area A
enclosing the volume V of interest. Thus, a flux divergence is needed to produce
material degradation (and material degradation is needed to eventually cause device
failure). Also, k can be either positive or negative depending on the details of the flux
divergence; thus, Eq. (5.3) can be used to describe either accumulation or depletion
of particles. The general solution to Eq. (5.3) can be found by separating the
variables and integrating,

ZN tð Þ

N 0ð Þ

dN
N

¼ �
Z t

0

k tð Þdt, ð5:5Þ

giving:

N tð Þ
N 0ð Þ ¼ exp �

Z t

0

k tð Þdt
2
4

3
5: ð5:6Þ

Failure is expected at time t ¼ TF, when the ratio N(t ¼ TF)/N(0) reaches some
critical fraction fcrit. This gives:

f crit ¼
N TFð Þ
N 0ð Þ ¼ exp �

R TF
0 k tð ÞdtR TF

0 dt
TF

" #
: ð5:7Þ

One will note that, in Eq. (5.7),3 the time-averaged value of the degradation-rate
constant hki appears where:

kh i ¼
R TF
0 k tð ÞdtR TF

0 dt
: ð5:8Þ

Using Eqs. (5.4) and (5.8), and solving Eq. (5.7) for TF, one obtains the TF
equation:

TF ¼ ln 1=f critð ÞR
~J x;tð Þ�d~A
N tð Þ

� � : ð5:9Þ

Remember that the brackets h i, in the above equation, represent the time-
averaged value of the quantities enclosed. The above equation shows explicitly

3We have inserted the identity: TF ¼
Z TF

0
dt:
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that a flux divergence in the particle transport is required to produce failure. The
equation also shows that the impact of the flux divergence is somewhat mitigated by
the number of atoms in failing volume. For example, with voiding-induced failure, if
the amount of flux divergence (net number of particles per second leaving the
volume) is constant, then one would expect that the time required for 10 % of the
atoms to leave the volume of interest would depend on the number of atoms in the
volume. This is evident by the fact that a wider metal conductor tends to fail more
slowly than a narrow one at the same stress level.4 This is indeed the case for crack
propagation. If the crack growth rate is constant (flux divergence is constant), then
the time required for the crack to propagate through the material increases with its
thickness.

For many failure mechanisms, the transport of material can be described as
Fickian-like. Fickian transport considers both the drift and diffusion components
for the atoms in the transport process:

J x; tð Þ ¼ μρ x; tð ÞF � D
∂ρ x; tð Þ

∂x
, ð5:10Þ

where μ is the particle mobility, ρ is the particle density, F is the driving force, and
D is the diffusivity for the moving particles. The first term on the right-hand side of
Eq. (5.10) is referred to as the drift component while the second term is referred to as
the diffusion component. The mobility μ is given by the Einstein relation:

μ ¼ D

KBT
¼

D0exp �Qdiffusion

KBT

� �
KBT

, ð5:11Þ

where Qdiffusion is the activation energy for diffusion, T is the Kelvin temperature,
and KB is Boltzmann’s constant (8.62 � 10�5 eV/K). D0 is the diffusion coefficient
and, for a solid material, can be approximated by,

D0 ¼ v0
6

r0ð Þ2, ð5:12Þ

where v0 is the vibration/interaction frequency (~1013/s) and r0 is the mean atom
spacing (~2 Å) in the material. Equations (5.9), (5.10), and (5.11) suggest that the TF
should depend (exponentially) on temperature T and on the driving force F.

4This is generally true for EM-induced failure in conductors. Wider metal leads, at the same current
density stress, tend to last longer. An apparent exception seems to exist in aluminum where very
narrow metal leads can last longer than wider metal leads during EM testing. With aluminum, a
bamboo-like grain-boundary microstructure can develop when the metal width and thickness are
comparable to the Al grain size. Here, however, the amount of flux divergence is no longer constant,
but is reduced by the bamboo grain structure thus causing the narrow metal leads to last longer than
the wider leads.
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The force F acting on an atom is, of course, derived from gradients: gradient in
electrical potential, gradient in mechanical stress, gradient in chemical potential, etc.

2 Stress Dependence and Activation Energy

It must be emphasized that even if we know the physics behind the driving force F,
and the activation energy Q for the diffusion process, which should permit accurate
modeling of the flux given by Eq. (5.10), seldom do we know the exact details of the
flux divergence. The exact details of the flux divergence are often imbedded in the
details of the materials microstructure. Thus, Eq. (5.9) is difficult to use when
constructing a TF equation. For this reason, it is usually assumed that the flux
divergence is related to the applied stress ξ through either a power-law or exponen-
tial dependence. Thus, the TF equation Eq. (5.9) is normally assumed to reduce to
one of the two following forms:

TF ¼ A0 ξð Þ�nexp
Q

KBT

� �
, ð5:13aÞ

or

TF ¼ B0exp �γ � ξð Þexp Q

KBT

� �
: ð5:13bÞ

In the above equations, ξ is the generalized stress (the agent which produces
material degradation and eventual device TF), n is the power-law exponent, γ is the
exponential stress parameter, Q is the activation energy, and A0 and B0 are material/
device-dependent prefactors. The key reliability physics parameters are the TF
kinetic values (n, γ, Q) and these are determined from actual TF data using the
following equations:

n ¼ � ∂ ln TF
∂ ln ξ

� �
T

, ð5:14aÞ

or

γ ¼ � ∂ ln TF
∂ξ

� �
T

, ð5:14bÞ

and5

5To properly use this equation, the temperature T must be expressed in Kelvin.
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Q ¼ kB
∂ ln TF
∂ l=Tð Þ

� �
ξ

ð5:15Þ

From the above equations, the power-law exponent n is determined from the
partial derivative of the logarithm of time-to-failure ln(TF) with respect to the
logarithm of the stress ln(ξ) while holding the temperature T constant. Thus, to
determine n, one usually does a log–log plot of TF versus the stress variable ξ. The
slope of the best fitting straight line is n. This is illustrated in Fig. 5.2. n is simply a
power-law exponent and, as such, n is dimensionless.

The exponential model parameter γ, according to Eq. (5.14b), is determined from
the partial derivative of the ln(TF) with respect to the stress ξ while holding the
temperature T constant. Thus, to determine γ, one usually does a semi-log plot of TF
versus the stress variable ξ: The slope of this best fitting straight line is γ. The units
for γ must be in reciprocal stress units so that the product γξ remains dimensionless.
This is illustrated in Fig. 5.3.

The activation energy Q is determined from the partial derivative of the ln
(TF) with respect to the inverse temperature (1/T ) while holding the stress ξ constant.
The temperature T must be expressed in Kelvin. Thus, to determine the activation
energy Q, one usually does a semi-log plot of TF versus the inverse temperature
(1/T ). Boltzmann’s constant (8.62 � 10-5 eV/K) times the slope of this best fitting
straight line is Q. In this text, the units for Q are normally expressed in electron volts
(eV) (see Fig. 5.4).

In Figs. 5.2, 5.3, and 5.4, we have illustrated how the TF kinetics is obtained
directly from observed TF data. For these illustrations, the stress dependence for the
TF could be described by a power-law model with exponent n ¼ 2 or with an
exponential model with γ ¼ 6.1 � 10-3 (in units of reciprocal stress). The temper-
ature dependence was described as being Arrhenius-like with an activation energy of
Q ¼ 0.52 (in units of eV). It should be emphasized that when determining the stress
dependence n (or γ), using Eq. (5.14a) and (5.14b), the temperature must be held
constant (either physically or mathematically). This can become an important issue if
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Fig. 5.2 Method is illustrated for determination of the power-law exponent n from time-to-failure
data. n is dimensionless

72 5 Time-to-Failure Modeling



the applied stress (such as current density) actually heats the sample.6 Therefore, one
may wish to determine the activation energy first, using Eq. (5.15), with the stress
level held fixed, and then use the activation energy Q to extrapolate to some fixed
temperature condition as the stress is changed.

Example Problem 1
Metal rods were tested at a constant tensile stress level, and elevated temper-
ature, until the metal rod failed due to creep. The tensile stress levels (in Mega-
Pascals) and the temperatures (in �C) for the test conditions are shown in the
table below, as well as the TF data.

Fig. 5.3 Method is
illustrated for determination
of the exponential parameter
γ from time-to-failure data. γ
must be expressed in the
units of reciprocal stress
such that the product γξ is
dimensionless
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1000/T(K)

Q = KB
¶ln(TF )
¶(1/T )
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û
ú
x
= 0.52eV

Fig. 5.4 Method is
illustrated for determination
of the activation energy Q,
from time-to-failure data. In
this text, Q will normally be
expressed in the units of
electron volts (eV). The
temperature must be
expressed in Kelvin

6This can be a very important issue if the stress also tends to serve as a significant source of self-
heating, e.g., Joule heating can raise the temperature of the conductor when the current density
stress is increased in a metal stripe during EM testing. This temperature rise (with the level of
current-density stress) must be taken into account when determining the failure kinetics.
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TEMP

Mechanical tensile-stress: σ

600 MPa 700 MPa 800 MPa

500 �C – 29.9 h –

550 �C 18.5 h 10.0 h 5.8 h

600 �C – 3.8 h –

(a) Assuming a power-law TF model, what is the power-law exponent for the
stress σ?

(b) What is the activation energy Q determined from this test?

Solution

(a) The stress dependence for the power-law TF model is given by
Eq. (5.14a):

n ¼ � ∂ ln TF
∂ ln σ

� �
T

:

Thus, one needs to perform a ln(TF) versus ln(σ) plot (while holding the
temperature T constant). As an equivalent approach, one can perform a TF
versus σ plot, using a logarithmic scaling of both axes. This latter approach
was chosen and the plot is shown below.

1

10

100

100 1000

TF
 (h

r)

Tensile Stress: σ (MPa)

( )
03.4

)ln(

ln
=ú

û

ù
ê
ë

é
¶
¶

−=
T

TFn
s

y =  (2.93E+12) x - 4.03

One can see from the above plot that the stress exponent for the power-law
is n ¼ 4.

(b) After converting the temperature from centigrade to Kelvin, the activation
energy Q determination is shown in the plot below.7

(continued)

7Remember that one must convert the temperature from Centigrade to Kelvin. The conversion
equation is T(K) ¼ T(�C) + 273.
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From the plot above we see that the activation is Q ¼ 1.2 eV.

3 Conservative Time-to-Failure Models

Since the TF models have adjustable parameters, it is likely that each of the TF
models will fit, quite nicely, the accelerated TF data over a limited accelerated
stress range. The stress-test range, however, is usually limited because of the time
required to take TF data. At the lower stress levels, the test time could easily
be years! Therefore, one usually has to model limited TF data, taken under higher
stress conditions, and then hope that the model is still valid for extrapolations to
much lower stress use conditions. Unless some overriding physics supports one
model over the other, then one might want to select the more conservative model (the
model which predicts the shortest time to failure). But which model is more
conservative?

Shown in Table 5.1 is a set of accelerated stress data (in arbitrary units) with the
corresponding TF (also in arbitrary units). We want to obtain the best fitting for each
model to the accelerated data and then see which model is more conservative (which
model produces the shortest TF when the models are used to predict TF at much
lower levels of stress).

The TF data is plotted in Fig. 5.5. Both the exponential and power-law models
tend to fit the actual accelerated data extremely well. However, even though both
models tend to fit the accelerated data points extremely well, the two models give
very different predictions for the TF (when the models are used to extrapolate to
much lower values of stress). One can see easily that the exponential model gives a
lower estimate of TF (at lower values of stress ξ versus the power-law model. For
this reason, we say that the exponential model gives a more conservative estimate of
time-to-failure versus the power-law model. One should always remember that the
exponential model is more conservative. This may be very important to remember in
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the case of very high-reliability applications, if there is little understanding of the
exact physics of failure. An understanding of failure mechanisms, and their
physics of failure, can often be very helpful in helping one to decide on which
model to use.

In summary, model selection would seem to be easy—just use the more conser-
vative model, right? Well maybe, maybe not. There is the apparent reliability truism:
the customer never gets mad if the device lasts longer than you predict.However, the
customer may get upset if you were too conservative, during device design and
development phases, and your new device does not meet either the cost or perfor-
mance expectations. Therefore, there should always be an emphasis on understand-
ing the physics of failure so that you can possibly use a more physics-based model
selection. Many physics-based models are presented, in Chaps. 11 and 12, to aid you
in your model selection. This will give you some degree of confidence in your model
selection—knowing that a certain TF model is widely used for the failure mecha-
nism of interest, and under what conditions the model is generally accepted to be
valid.

Table 5.1 Arbitrary
accelerated data

Stress: ξ (arbitrary units) TF (arbitrary units)

100 1.00

90 1.52

80 2.44

70 4.17

TF = (9.99E+07)ξ-4.0

TF = 113exp[-0.0475ξ]
1.0E-01

1.0E+00
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Fig. 5.5 The two time-to-failure TF models (exponential and power-law) were used to fit the
accelerated stress data shown in Table 5.1. Note that the two models fit the accelerated TF data
extremely well at the higher values of stress. At the lower stress levels, the two models generate
dramatically different predictions. Note that the exponential model is more conservative (shorter
time-to-failure prediction) at lower stress levels

76 5 Time-to-Failure Modeling



4 Time-to-Failure Modeling Under High-Stress

The breakdown strength ξBD of a material is defined as the level of stress at which the
material is expected to fail instantaneously. Since the material breakdown generally
involves atom movement, and atoms cannot move faster than the speed of light,
instantaneous behavior is not really possible. By instantaneous, we will mean that
the time-to-failure t0 at a stress level of ξBD is extremely short versus the TF at 50 %
of ξBD. For example, a device/material might be able to operate safely for years at
50 % of ξBD, but could fail in milliseconds at ξBD. Usually ξBD is determined
experimentally by ramping up the level of the stress ξ until ξBD is recorded.
Ramp-to-failure testing and t0 determination is discussed in Chap. 10.

Since stressing close to ξBD is obviously in a very high-stress region, a special
form of Eq. (5.13b) is sometimes used. One can write Eq. (5.13b) as:

TF ¼ B0 Tð Þexp �γξð Þ ð5:16Þ

By inserting an identity8 and rewriting one obtains:

TF ¼ t0 Tð Þexp�γ	ξBD � ξ

 ð5:17Þ

where,

t0 Tð Þ ¼ B0 Tð Þexp �γξBDð Þ ¼ B0exp �γξBDð Þexp Q0

KBT

� �
: ð5:18Þ

One will note that Eq. (5.17) is self-consistent in that: when ξ¼ ξBD then TF¼ t0,
where t0 is the TF at breakdown. This will be very useful for interpreting ramp-to-
failure test results (Chap. 10). It is also important to note that, experimentally, one
finds that γ can be temperature dependent, and this temperature dependence has been
expressed historically as:9

γ Tð Þ ¼ γ0 þ
γ1
KBT

: ð5:19Þ

Thus, if γ has the expected temperature dependence, as described by Eq. (5.19),
then Eq. (5.13b) can be written as

8Identity is used: exp(�γξBD) exp(γξBD) ¼ 1.
9In Problem 7, at the end of this chapter, it is shown that a stress-dependent activation energy also
develops if a Maclaurin Series expansion is used: γ(T ) ¼ a0 + (a1KB)T.

4 Time-to-Failure Modeling Under High-Stress 77



TF ¼ t0exp γ0 ξBD � ξð Þ½ �exp Q� γ1ξ

KBT

� �
, ð5:20Þ

where Q ¼ Q0 + γ1ξBD. Note that Eq. (5.20) suggests that, under very high stress
conditions (very close to the breakdown strength of the material), the effective
activation energy Qeff ¼ Q - γ1ξ may show a reduction with stress if γ1 not equal
to 0.10 A stress-dependent activation energy is widely reported for time-dependent
dielectric breakdown TDDB (under high electric-field stress conditions) and for
creep-rate studies for metals (under high mechanical stress conditions at high
temperatures). Thus, one should consider the possibility of a stress-dependent
activation energy when doing extremely high-stress TF testing. The physics behind
this stress-dependent activation energy is discussed in detail in Chap. 8.

Problems

1. If a constant flux divergence exists, and is given by:

Z
~J � d~A ¼ R ¼ 100, 000Billion atoms

s
,

find the time required for 50 % of the atoms to flow out of 1 cm3 of aluminum.
Hint:

Natoms ¼ densityð ÞA1 Vo1umeð ÞA1
atomicweightð ÞA1

¼ 2:7g=cm3ð Þ 1cm3ð Þ
27:0gð Þ= 6:02� 1023atoms

	 �
¼ 6:0� 1022 atoms

Answer: 9.5 years

2. If the reaction-rate constant k shows a monotonic time dependence, then Chap. 2
suggests that one can approximate the time dependence with:

k tð Þ ¼ k0 1� a0t
m½ �,

where the plus (+) sign is used for an increasing reaction rate constant and a
minus (-) sign for a decreasing reaction rate constant. Using Eq. (5.3), show that
the TF is given by the transcendental equation:

10The occurrence of a stress-dependent activation energy (for high level of stress) is discussed in
detail in Chap. 8.
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TF ¼ ln N0=N t ¼ TFð Þ½ �
k0 1� a0

TFð Þm
mþ 1

� � :

3. EM testing of Cu produced the following table of TF results:

Electromigration time-to-failure data

1 � 106 (A/cm2) 2 � 106 (A/cm2) 3 � 106 (A/cm2)

280 �C – 20.3 h –

300 �C 20 h 10 h 6.7 h

320 �C – 5 h –

(a) Find the power-law exponent n for the current density.
(b) Find the activation energy Q for this failure mechanism.

Answers: (a) n ¼ 1 (b) Q ¼ 1.0 eV

4. Corrosion testing of a metal produced the following table of TF results:
Corrosion time-to-failure data

Corrosion time-to-failure data

60 % RH 70 % RH 80 % RH

25 �C – 824 h –

50 �C 332 h 100 h 30 h

75 �C – 16.4 h –

(a) Find the exponential-dependence parameter γ for the humidity.
(b) Find the activation energy for this failure mechanism.

Answers: (a) γ ¼ 0.12 (%RH)-1 (b) Q ¼ 0.7 eV

5. Testing for surface-inversion/mobile-ions in ICs produced the following TF
results:

Mobile-Ions time-to-failure data

3 V 6 V 9 V

60 �C – 67.70 h –

70 �C 40 h 20 h 13.30 h

80 �C – 6.33 h –

(a) Find the power-law exponent n which describes the voltage dependence.
(b) Find the activation energy Q for this failure mechanism.

Answers: (a) n ¼ 1 (b) Q ¼ 1.2 eV
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6. Testing for channel hot-carriers in n-type MOSFETs produced the following TF
results.

Hot-Carrier injection time–to–failure data

5 μA/μm 15 μA/μm 25 μA/μm
25 �C – 5.65 h –

50 �C 324 h 12 h 2.60 h

75 �C – 22.90 h –

(a) Find the power-law exponent n which describes the substrate current
dependence.

(b) Find the activation energy Q for this failure mechanism.

Answers: (a) n ¼ 3 (b) Q ¼ �0.25 eV

7. Using Eq. (5.13b) for TF, and assuming that the temperature dependence of γ
can be expressed by the Maclaurin Series:

γ Tð Þ ffi a0 þ a1KBð ÞT ,

show that a stress-dependent activation energy develops of the form:

Qeff ¼ Q� a1 KBTð Þ2ξ:
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Chapter 6
Gaussian Statistics: An Overview

The Gaussian distribution (normal or bell-shaped distribution) is a widely used
statistical distribution and it is generally used as the foundation for statistical quality
control. Simply measuring the time-zero values of a parameter (resistor values,
mechanical tolerances, children heights, class grades on a test, etc.) can result in a
distribution of values which can be described by a normal distribution.

1 Normal Distribution

The normal distribution f(x) shown in Fig. 6.1 is defined by the equation:

f xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p exp � x� x50
σ

ffiffiffi
2

p
� �2( )

: ð6:1Þ

For the normal distribution (since it is symmetrical), x50 represents the mean ¼
mode¼median. In order to be consistent with later chapters in this book, x50

1 will be
referred to as the median (50 % of the values are below the median value and 50 %
are above). σ is the standard deviation2 (represents the spread in the data) and can be
approximated by σ ¼ x50 - x16, where x16 represents the value and where 16 %

3 of the
observations are below this value. Once x50 and σ are determined from the data, then
the full distribution is described by Eq. (6.1).

1Mean can be estimated: x50 ¼
XN

i¼1
xi=N,when N is the sample size.

2Standard deviation can be estimated: σ ¼
XN

i¼1
xi � x50ð Þ2= N � 1ð Þ

h i1=2
.

3A more precise value is 15.87 %.
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x50 and σ can be determined from a plot of the cumulative fraction F(x):

F xð Þ ¼
ðx

0

f xð Þdx: ð6:2Þ

The cumulative (cum) fraction F integral in Eq. (6.2) must be numerically
evaluated and is given by:

F xð Þ ¼ 1
2
erfc

x50 � x

σ
ffiffiffi
2

p
� �

for x � x50ð Þ

and

F xð Þ ¼ 1� 1
2
erfc

x� x50
σ

ffiffiffi
2

p
� �

for x � x50ð Þ, ð6:3Þ

where the erfc stands for the error function complement. Some often used values
for the erfc are shown in Table 6.1. In the past, such tables were widely used by
engineers. Now, however, ERFC is a standard Excel Function so any arbitrary value
is readily available to the engineer.

Table 6.2 is an example of a suggested method for data collection that can be used
for relatively easy statistical analysis. In this example, 25 measurements were taken
on the shear strength (in units of gm-f)4 of Au ball bonds to aluminum pads on
semiconductor chips. These 25 observed measurements (data points) were then

+σ-σ

x50

Parameter: x

f(x)

Histogram

Parameter : x

Fr
eq

ue
nc

y

Fig. 6.1 Gaussian
(or normal) distribution is
illustrated. x50 is the mean ¼
mode ¼ median. 68.3 % of
observations are between
(�)σ, 95.5 % of
observations are between
(�)2σ and 99.7 % of
observations are between
(�)3σ

4One gm-f equals 9.8 � 10�3 N.
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Table 6.1 Error function
complement (erfc)

y erfc(y) y erfc(y)

0 1.0000 1 0.1573

0.1 0.8875 1.1 0.1198

0.2 0.7773 1.2 0.0897

0.3 0.6714 1.3 0.0660

0.4 0.5716 1.4 0.0477

0.5 0.4795 1.5 0.0339

0.6 0.3961 1.6 0.0237

0.7 0.3222 1.7 0.0162

0.8 0.2579 1.8 0.0109

0.9 0.2031 1.9 0.0072

1 0.1573 2.0 0.0047

Table 6.2 Statistical data for bond shear strengths

Statistical data collection and analysis method

Sample size Observation Ranked data Unbiased Estimate
of Cum fractiona

Normal Distribution

25 # Shear strength (gm-f) F Z-Value

1 17.07 0.028 �1.918

2 17.11 0.067 �1.499

3 18.02 0.106 �1.246

4 18.20 0.146 �1.055

5 18.50 0.185 �0.896

6 18.61 0.224 �0.757

7 18.70 0.264 �0.632

8 18.72 0.303 �0.515

9 18.79 0.343 �0.406

10 18.96 0.382 �0.301

11 19.20 0.421 �0.199

12 19.34 0.461 �0.099

13 19.42 0.500 0.000

14 19.44 0.539 0.099

15 19.46 0.579 0.199

16 19.55 0.618 0.301

17 19.61 0.657 0.406

18 19.75 0.697 0.515

19 19.81 0.736 0.632

20 19.88 0.776 0.757

21 19.96 0.815 0.896

22 19.98 0.854 1.055

23 20.03 0.894 1.246

24 20.25 0.933 1.499

25 20.26 0.972 1.918
aUnbiased estimate: F ¼ (Observation # � 0.3)/(Sample Size + 0.4)
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ranked from smallest to largest value. In order to insure that all 25 data points can be
used when plotting the data, an unbiased estimate is used for the cumulative fraction
failed F.5 An unbiased estimate used for F in this text is:

F ¼ Observation #� 0:3
Sample Sizeþ 0:4

, ð6:4Þ

where observation # is the cumulative number of observations.
The cum fraction F is very useful in that it permits relatively easy plotting of the

statistical data and relatively easy parameter (x50, σ) extraction from the data. The
plot of the data (from Table 6.2) is shown in Fig. 6.2, as well as the extracted best
fitting normal distribution parameters (x50, σ). Using these best fitting normal
distribution parameters (x50, σ), shown in Fig. 6.2, the resulting normal distribution
is shown in Fig. 6.3.

In Table 6.3, the Z-value is the number of standard deviations associated with a
given cum fraction F and can be found from standard lookup tables such as the ones
below, or can be easily generated with an EXCEL spreadsheet: to go from Z to F, use
the EXCEL function F ¼ NORMSDIST(Z ); to go from F to Z, use the EXCEL
function: Z ¼ NORMSINV(F).

Fig. 6.2 Normal distribution plotting for data found in Table 6.2

5A cumulative probability of exactly F ¼ 1 cannot be plotted. Therefore, in order to ensure that all
25 data points can be plotted, then an unbiased estimate of the cum F is needed. In reliability
physics and engineering, Eq. (6.4) is generally used.
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Fig. 6.3 Shear strengths (from Table 6.2) presented as a normal distribution

Table 6.3 Conversion tables for F to Z and Z to F

From Cum F to Z-values From Z-values to Cum F

Cum F
Standard deviations (Z-values)
NORMSINV(F)

Standard deviations
Z-value

Cum
F NORMSDIST(Z )

0.001 �3.090232306 �3.0 0.0013

0.01 �2.326347874 �2.5 0.0062

0.1 �1.281551566 �2.0 0.0228

0.2 �0.841621234 �1.5 0.0668

0.3 �0.524400513 �1.0 0.1587

0.4 �0.253347103 �0.5 0.3085

0.5 �1.39214E-16 0.0 0.5000

0.6 0.253347103 0.5 0.6915

0.7 0.524400513 1.0 0.8413

0.8 0.841621234 1.5 0.9332

0.9 1.281551566 2.0 0.9772

0.95 1.644853627 2.5 0.9938

0.99 2.326347874 3.0 0.9987

0.999 3.090232306
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In general, once the normal distribution parameters (x50, σ) are determined, then
any other fraction F can be found using the equation:

xF ¼ x50 � zFσ: ð6:5Þ

The following relations are so frequently used that they are highlighted here:

x16% ¼ x50 � 1σ; x1% ¼ x50 � 2:33σ; x0:13% ¼ x50 � 3σ: ð6:6Þ

2 Probability Density Function

The normal distribution, as defined by Eq. (6.1), is a normalized distribution (which
means that the total area under the curve is equal to unity). Thus, f(x) can be
thought of as a probability density function such that f(x)dx is the probability of
finding a value between x and x + dx, as illustrated in Fig. 6.4. The probability of
finding a value in the range, between x1 and x2, is then given by

P x1 tox2ð Þ ¼
ðx2
x1

f xð Þdx ¼ F x2ð Þ � F x1ð Þ: ð6:7Þ
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x x + dx

f(x)

Shear-Strength : x (gm-force)

f(
x)

f(x)dx = Probability
of observing a value
Between x and x+dx

Fig. 6.4 f(x)dx represents the probability of observing a value of shear strength between x and
x + dx
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Example Problem 1
From Fig. 6.3, normal distribution characteristic parameters that describe the
ball bond shear strengths are:

x50 ¼ 19:15gm� f

and

σ ¼ 0:96gm� f:

Find the probability that if one does a single measurement of the shear
strength of the ball bonds, a value between 18.0 and 19.0 gm-f will be
obtained.

Solution

P 18:0 to19:0ð Þ ¼
ð19:0

18:0

f xð Þdx ¼ F 19:0ð Þ � F 18:0ð Þ

The cum fail fractions are given by:

F 19:0ð Þ ¼ 1
2
erfc

19:15� 19:0

0:96
ffiffiffi
2

p
� �

¼ 0:438

and

F 18:0ð Þ ¼ 1
2
erfc

19:15� 18:0

0:96
ffiffiffi
2

p
� �

¼ 0:115

This gives:

P 18:0 to19:0ð Þ ¼ F 19:0ð Þ � F 18:0ð Þ ¼ 0:438� 0:115 ¼ 0:323

Therefore, the probability of a single bond-shear measurement producing a
value between 18.0 and 19.0 gm-f is 0.323 (or 32.3 %).

3 Statistical Process Control

Suppose that one knows (maybe from previous experience) that the lower reliable
bond strength is 15.5 gm-f (an under-bonding condition). Likewise, when the time-
zero bond strength exceeds 24.5 gm-f (an over-bonding condition), the bond is also
unreliable. A very natural question to ask is—how does one statistically characterize
the bonding process and is this process under control for reliable use? To answer the
above questions, capability parameters Cp and Cpk are used.
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Cp and Cpk are defined quantities:

Cp ¼ Upper Spec Limitð Þ � Lower Spec Limitð Þ
6σ

ð6:8Þ

and

Cpk ¼ Cpl ¼ x50ð Þ � Lower Specð Þ
3σ

ð6:9aÞ

or

Cpk ¼ Cpu ¼ Upper Specð Þ � x50ð Þ
3σ

ð6:9bÞ

The value of Cpk is stated based on whether Eqs. (6.9a) or (6.9b) produces a
smaller value. For a perfectly centered process, note that Cpk ¼ Cpl ¼ Cpu ¼ Cp.

Example Problem 2
For the ball bonding process illustrated in Fig. 6.3, with (x50 ¼ 19.15 gm-f,
σ ¼ 0.96), what is the capability (Cp) for this process and how well is it
centered (Cpk)? Assume that the lower permitted level is 15.5 gm-f and the
upper permitted level is 24.5 gm-f.

Solution
The process capability is given by:

Cp ¼ 24:5� 15:5ð Þgm� f
6 0:96ð Þgm� f

¼ 1:56:

The centering for the process is given by:

Cpk ¼ Cup ¼ 24:5� 19:15ð Þgm-f
3 0:96ð Þgm-f

or

Cpk ¼ Cpl ¼ 19:15� 15:5ð Þgm-f
3 0:96ð Þgm-f

¼ 1:27:

Therefore, Cpk is 1.27 (note that the smaller of the two Cpk values is used).
Cpk is non-symmetrical (since Cpl is not equal to Cpu), and is dominated by
the lower-end specification.
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Example Problem 3
From the previous example problem, it was determined that Cpk ¼ 1.27 and
was dominated by the lower-end of the distribution relative to the specification
(spec). (a) What fraction of the bonds has the potential for reliability problems
occurring at the lower-end of the spec? (b) Fraction of bonds above the upper-
end spec?

Solution

(a) One will need to find the number of standard deviations (Z-value) that
corresponds to the lower-end spec. From Fig. 6.2 one obtains:

Z ¼ 1:043
gm-f

� �
x� 19:969,

With the lower-end spec at x ¼ 15.5 gm-f, this gives: Z ¼ - 3.803.
Using the EXCEL NORMSDIST function, one obtains:

F ¼ NORMSDIST �3:803ð Þ ¼ 7:15� 10�5:

Therefore, the fraction of bonds at reliability risk due to the lower-end
spec is 71.5 ppm (parts per million) or 0.00715 % of the bonds.

(b) One needs to find the number of standard deviations (Z-value) at the
upper-end specification. Again, using:

Z ¼ 1:043
gm-f

� �
x� 19:969,

with the upper-end spec of x ¼ 24.5 gm-f, one obtains: Z ¼ 5.585.
Using the EXCEL NORMSDIST function, one obtains:

F ¼ NORMDIST 5:585ð Þ ¼ 0:9999999883:

Therefore, the fraction of the bonds at reliability risk due to the upper-end
spec is 1 � F where:

1— F ¼ 1— 0.9999999883 ¼ 11.7 � 10—9or 11.7 parts per billion(ppb):
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Problems

1. O-rings (from a manufacturing line) were randomly selected for diameter
measurements. The 25 measurements are shown in the below table (all mea-
surements are in mm). Find the Normal Distribution parameters: median diam-
eter size (x50) and the standard deviation σ.

181.4 173.0 172.2 173.5 180.5

187.8 178.6 170.7 179.5 186.5

171.1 180.0 183.4 177.3 187.0

176.7 186.1 182.5 174.2 188.7

184.0 185.6 190.0 175.4 189.5

Answers: x50 ¼ 180.7 mm σ ¼ 6.6 mm

2. For the O-ring manufacturing process in Problem 1 (x50 ¼ 180.7 mm, σ ¼ 6.6
mm), find the capability parameters: Cp and Cpk. Assume that the upper spec
limit is 215 mm and the lower spec limit is 155 mm.

Answers: Cp ¼ 1.52 Cpk ¼ 1.30

3. The breakdown-strength distribution for capacitor dielectrics had a median
value of (Ebd)50 ¼ 10.50 MV/cm and a σ ¼ 1.8 MV/cm.

(a) Find the fraction of caps with a breakdown � 8 MV/cm.
(b) Find the fraction of caps with a breakdown � 12 MV/cm.

Answers: (a) 0.082 (b) 0.202

4. The rupture strength distribution of water pipes had a median value of (Rupture-
Stress)50 ¼ 900 MPa and a σ ¼ 120 MPa.

(a) Find the fraction of pipes with a rupture stress of � 600 MPa.
(b) Find the fraction of pipes with a rupture stress of � 1,300 MPa.

Answers: (a) 6.21 � 10�3 ¼ 6,210 ppm (b) 4.29 � 10�4 ¼ 429 ppm

5. Resistors have a resistance value distribution with a median value of (R)50 ¼
189 Ω and a σ ¼ 3.5 Ω.

(a) Find the fraction of resistors with a resistance value of � 160 Ω.
(b) Find the fraction of resistors with a resistance value of � 200 Ω.

Answers: (a) 5.55 � 10�17 ¼ 0.555 � 10�10 ppm (b) 8.37 � 10�4 ¼ 837 ppm

6. A group of patients had a heart rate distribution with a median value (HR)50 ¼
60 beats/min and a σ ¼ 2 beats/min.

(a) Find the fraction of patients with a heart rate of � 50 beats/min.
(b) Find the fraction of patients with a heart rate of � 70 beats/min.

Answers: (a) 2.87 � 10�7 ¼ 0.287 ppm (b) 2.87 � 10�7 ¼ 0.287 ppm
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7. Using the breakdown-strength distribution, defined in Problem 3, what are the
process capability parameters: Cp and Cpk? Assume an upper-level limit of
12 MV/cm and a lower-level limit of 8 MV/cm.

Answers: Cp ¼ 0.37 Cpk ¼ 0.28

8. For the rupture strength distribution, defined in Problem 4, what are the process
capability parameters: Cp and Cpk? Assume an upper-level limit of 1,300 MPa
and a lower-level limit of 600 MPa.

Answers: Cp ¼ 0.97 Cpk ¼ 0.83

9. For the resistor distribution, defined in Problem 5, what are the process capa-
bility parameters: Cp and Cpk? Assume an upper-level limit of 200 Ω and a
lower-level limit of 160 Ω.

Answers: Cp ¼ 1.90 Cpk ¼ 1.05

10. For the heart rate distribution, defined in Problem 6, what are the capability
parameters: Cp and Cpk for this group of patients? Assume an upper-level limit
of 70 beats/min and a lower-level limit of 50 beats/min.

Answers: Cp ¼ 1.67 Cpk ¼ 1.67
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Chapter 7
Time-to-Failure Statistics

When nearly identically processed materials/devices are placed under the same set of
stress conditions, they will not fail exactly at the same time. An explanation for this
occurrence is that slight differences can exist in the materials’ microstructure, even
for materials/devices processed nearly identically. This means that not only are we
interested in time-to-failure but, more precisely, we are interested in the distribution
of times-to-failure. Once the distribution of times-to-failure is established, then one
can construct a probability density function f(t) which will permit one to calculate the
probability of observing a failure in any arbitrary time interval between t and t + dt,
as illustrated in Fig. 7.1.

Historically, two probability density functions have been widely used to describe
material/device failures: lognormal and Weibull distributions. Due to their impor-
tance in reliability physics and engineering, each distribution will be discussed in
some detail. The possibility of having to use multimodal distributions or mixed
multiple failure distributions to describe your time-to-failure data is also presented.

1 Lognormal Probability Density Function

The lognormal distribution is based on the normal distribution, except that failures
are assumed to be logarithmically distributed in time, rather than linearly distributed
in time. The use of the lognormal distribution has been very popular for describing
time-to-failure for devices where the degradation mechanism is fairly general/exten-
sive in nature and not restricted to simply a very localized/microscopic region of the
material. Examples of failure mechanisms where the use of the lognormal distribu-
tion has gained popularity include: electromigration-induced failure, corrosion-
induced failure, wear-induced failure, creep-induced failure, and fatigue-induced
failure. These are discussed in Chaps. 12 and 13.
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The lognormal probability density function is defined by:

f tð Þ ¼ 1

σt
ffiffiffiffiffi
2π

p exp � ln tð Þ � ln t50ð Þ
σ

ffiffiffi
2

p
� �2( )

ð7:1Þ

where t50 is the median time-to-failure and σ is the logarithmic standard devia-
tion.1 σ is usually approximated by σ ¼ ln(t50) � ln(t16) ¼ ln(t50/t16) where t16
represents the time-to-failure for 16 % of the units. The cumulative failure proba-
bility F for the lognormal distribution is given by:

F tð Þ ¼ 1
2
erfc

ln t50ð Þ � ln tð Þ
σ

ffiffiffi
2

p
� �

for t � t50ð Þ

F tð Þ ¼ 1� 1
2
erfc

ln tð Þ � ln t50ð Þ
σ

ffiffiffi
2

p
� �

for t � t50ð Þ:
ð7:2Þ

A systematic approach to collecting cumulative fraction F failure data for statis-
tical analysis is shown in Table 7.1.

The cumulative time-to-failure data (from Table 7.1) is shown in Fig. 7.2 with
lognormal probability scaling. One can see from Fig. 7.2 that if normal probability
scaling versus ln(t) is used, a best fitting straight line develops whereby both t50 and
t16 can be read directly from the plot. However, this requires a special scaling, as
illustrated in Fig. 7.2, for the cumulative fraction of devices failed. As discussed in

Fig. 7.1 Probability density function f(t) for failure. f(t)dt represents the probability of finding a
device failure between t and t + dt

1Note that the lognormal distribution has the same general form as does the normal distribution in
Chap. 5. The major differences are: (1) the natural logarithm of time ln(t) is used rather simply the
time t; and (2) σ now represents the logarithmic standard deviation σ ¼ ln(t50/t16). Also, the (1/t) in
the prefactor of the lognormal distribution is needed to ensure that f(t)dt will continue to represent
the probability of failure. This is due to the fact that dln(t) ¼ (1/t)dt.
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Chap. 5 for the normal distribution, an alternative method to this type of represen-
tation of the lognormal distribution is to simply use the number of logarithmic
standard deviations represented by the Z-values. Recall that Z ¼ 1 represents one
logarithmic standard deviation σ ¼ ln(t50/t16), Z ¼ 2 represents two logarithmic
standard deviations, etc. Also recall from Chap. 5, the conversion of cumulative
fraction failed F to a Z-value, and vice versa, can be easily done using

EXCEL functions: Z¼NORMSINV(F) and F¼NORMSDIST(Z ), respectively.
Conversions, from F to Z and from Z to F, are shown in Table 7.2

The Z-values in the table above represent logarithmic standard deviations. Thus,
using Z values, the data is replotted in Fig. 7.3.

In general, once the lognormal parameters (t50, σ) are determined, then any other
cum fraction F can be obtained using the equation:

tF% ¼ t50exp ZF � σ½ �: ð7:3Þ

σ is calculated using σ ¼ ln(t50/t16)

Table 7.1 Method for collection of cumulative fraction failure data

Sample size ¼ 132

Time (h) Number of new failures recorded
at each time interval

Cum #
failures

Raw cum
fraction

Unbiaseda cum
fraction F

500 3 3 0.02 0.02

1,000 27 30 0.23 0.22

1,500 37 67 0.51 0.50

2,000 29 96 0.73 0.72
aUnbiased estimate of F ¼ (Cum # failures - 0.3)/(Sample size + 0.4)

Fig. 7.2 Lognormal plotting of cumulative data from Table 7.1
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Table 7.2 Lognormal
conversion Tables for
F to Z and Z to F

F Z-Value Z-Value F

0.001 �3.0902 �3.50 0.00023

0.010 �2.3263 �3.00 0.00135

0.100 �1.2816 �2.50 0.00621

0.150 �1.0364 �2.00 0.02275

0.200 �0.8416 �1.50 0.06681

0.250 �0.6745 �1.25 0.10565

0.300 �0.5244 �1.00 0.15866

0.350 �0.3853 �0.75 0.22663

0.400 �0.2533 �0.50 0.30854

0.450 �0.1257 �0.25 0.40129

0.500 0.0000 0.00 0.50000

0.550 0.1257 0.25 0.59871

0.600 0.2533 0.50 0.69146

0.650 0.3853 0.75 0.77337

0.700 0.5244 1.00 0.84134

0.750 0.6745 1.25 0.89435

0.800 0.8416 1.50 0.93319

0.850 1.0364 2.00 0.97725

0.900 1.2816 2.50 0.99379

0.950 1.6449 3.00 0.99865

0.990 2.3263 3.50 0.99977

0.999 3.0902
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Z-value Scaling

Z = 1.895ln(t) 13.845
Z=0�t50 = exp(13.845/1.895)= 1489 h
Z=-1�t16 =exp(12.845/1.895)= 879 h
σ = ln(t50/t16)= 0.53

Fig. 7.3 Alternative method for performing a lognormal plot of the time-to-failure data found in
Table 7.1. Note that the figure here differs from the normal distribution in that a logarithmic scaling
is used for the time axis. t50 is extracted from the best fitting linear equation by setting the Z-value¼
0. t16 is obtained by setting the Z-value ¼ -1.
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The following relations are so frequently used for the lognormal distribution that
they are highlighted here:

t16% ¼ t50
exp 1σð Þ ; t1% ¼ t50

exp 2:33σð Þ ; t0:13% ¼ t50
exp 3σð Þ : ð7:4Þ

2 Weibull Probability Density Function

The Weibull distribution is a weakest-link type distribution. By using the term
weakest link, one means that the failure of the whole (for example a chain) is
dominated by the degradation rate for the weakest element (one of the links). The
Weibull distribution is very popular when plotting semiconductor failure mecha-
nisms such as time-dependent dielectric breakdown (TDDB) where the entire capac-
itor fails when a very localized region of the capacitor fails. The Weibull distribution
tends to fit TDDB data extremely well because one small localized region (usually
called a percolation region/path) of the dielectric will tend to degrade more rapidly
than the other regions of the dielectric. Thus, the failure of the whole (capacitor)
tends to be dominated by the degradation of this weakest link (very localized/
microscopic region within the dielectric). The Weibull distribution is also very
useful for system reliability where the entire system fails when one of the constituent
components fails.

The Weibull probability density function is defined by

f tð Þ ¼ β

α

� �
t

α

� �β�1
exp � t

α

� �β
� �

, ð7:5Þ

where α is referred to as the characteristic time-to-failure and β is referred to as the
shape (or dispersion or Weibull slope) parameter.

Unlike the lognormal distribution (where the cumulative failure probability F(t)
must be obtained by numerical methods represented by the error function), an
analytical expression can be found for the cumulative Weibull failure probability
function,

F tð Þ ¼
Z t

0

f tð Þdt ¼ 1� exp � t

α

� �β
� �

: ð7:6Þ

Rearranging Eq. (7.6) and taking the appropriate logarithms, one obtains:

ln � ln 1� Fð Þ½ � ¼ β ln t=αð Þ½ �: ð7:7Þ
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One can see that when F ¼ 0.63212, the left-hand side of Eq. (7.7) goes to
zero. It tells us that the characteristic time α is the time for 63.212 % of the devices
to fail.

Generally, one simply approximates this and writes the Weibull characteristic
time as: α ¼ t63. Solving for the Weibull slope β in Eq. (7.7), one obtains:2

β ¼ ln � ln 1� Fð Þ½ �
ln t=t63ð Þ : ð7:8Þ

Using the time-to-failure data shown in Table 7.1, a Weibull plot of the data is
shown in Fig. 7.4 using a special Weibull probability scaling. The determination of
the characteristic time t63 and Weibull slope β, which give the best fitting to the
time-to-failure data, are shown. One can see that the Weibull distribution gives a
reasonably good fitting to the data. The Weibull parameters that give the best fitting
to the data are: a characteristic time of t63 ¼ 1,738 h and a slope of β ¼ 3.02.

An alternative method for performing the Weibull plotting is through the use of
Weibits. The conversion of cumulative fraction failed F into Weibits is given by:
Weibit ¼ ln[�ln(1 � F)]. Table 7.3 shows a few selected conversions.

The new Weibull plot of the time-to-failure data, found in Table 7.1, is shown in
Fig. 7.5.

One should always keep in mind, when working with such Weibull plots, that a
Weibit ¼ 0 (using the best fitting line) corresponds to t63. The slope of this best

Fig. 7.4 Weibull probability plotting is shown for data in Table 7.1

2Note that any cumulative fraction F, and its corresponding failure time, may be used in Eq. (7.8) to
determine the Weibull slope. The author’s preference is to use F¼ 0.1 and t10. However, this is only
a preference, not a requirement.
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fitting line is the Weibull slope β. Once the Weibull distribution parameters (t63, β)
are established, then any other cum fraction can be found using:

tF% ¼ t63exp
1
β
ln � ln 1� Fð Þ½ �

	 

: ð7:9Þ

Some often used values for the Weibull distribution are highlighted here:

t10% ¼ t63

exp
2:25
β

� � ; t1% ¼ t63

exp
4:60
β

� � ; t0:1% ¼ t63

exp
6:91
β

� � : ð7:10Þ

Table 7.3 Conversions from F to Weibits and Weibits to F

Cum F Weibits ln[� ln(1 � F)] Weibits ln[� ln(1 � F)] Cum F

0.001 �6.90725507 �3.0 0.048568007

0.01 �4.60014923 �2.5 0.078806345

0.1 �2.25036733 �2.0 0.126576982

0.2 �1.49993999 �1.5 0.199989287

0.3 �1.03093043 �1.0 0.307799372

0.4 �0.67172699 �0.5 0.454760788

0.5 �0.36651292 0.0 0.632120559

0.6 �0.08742157 0.5 0.807704354

0.7 0.185626759 1.0 0.934011964

0.8 0.475884995 1.5 0.988685714

0.9 0.834032445 2.0 0.999382021

0.95 1.0971887 2.5 0.999994881

0.99 1.527179626 3.0 0.999999998

0.999 1.932644734

100
–5

–4

–3

–2

–1

0

1

1000 10000

Time (h)

ln[–ln(1–F)] = 3.0185ln(t)–22.5118

ln
[–

ln
(1

–F
)]

t63 = exp(22.5118/3.0186) = 1738 h
β = 3.02

Fig. 7.5 Weibull distribution plotting in terms of Weibits (Weibit ¼ ln[-ln(1 – F)]). Note that a
Weibit ¼ 0, produces t63. The slope of the best linear fitting is β
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3 Multimodal Distributions

Generally, a multimodal failure distribution has more than one failure mechanism
present in the single set of time-to-failure data. Sometimes this can be easily detected
in the time-to-failure data because the failure mechanisms are slightly separated in
time. Often, however, the mechanisms are mixed (occurring during the same time
intervals).

3.1 Multimodal Distribution (Separated in Time)

When taking time-to-failure data sometimes more than one failure mechanism/ mode
can be active during a single reliability test. In semiconductor devices, one might
have electromigration, TDDB, and hot-carrier injection (HCI) failures occurring
during the same high-temperature operating life test. In mechanical systems, one
might have wear, fatigue and corrosion-induced failures occurring during the same
test. Multimodal time-to-failure data is shown in Table 7.4.

Evidence for more than one failure mechanism being active during a single
reliability test can sometimes be detected as points of inflection in the lognormal
and/or Weibull plots. In Table 7.4, time-to-failure data is shown. When this time-to-
failure data is plotted in a single lognormal plot3 (as shown in Fig. 7.6), at least three
failure mechanisms/modes (A, B, and C) are indicated in Fig. 7.6 by the two
indicated points of inflection.

As one can see from Fig. 7.6, Mechanism A is responsible for about 22 % of the
total failures. Mechanism B is responsible for about 40 % of the total failures and
Mechanism C represents about 38 % of the total number of failures. Many times we
would like to estimate what distribution A (alone) would look like, or B (alone) or C
(alone).

3A lognormal distribution was used here but a Weibull distribution could have been used and would
show similar results.
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Fig. 7.6 Two inflection points are evident in this single lognormal plot. The two inflection points
suggest the possibility of three failure mechanisms (A, B, C) existing in this single set of time-to-
failure data

Table 7.4 Multimodal time-
to-failure data Rank F Time-to-failure (h)

Normal distribution
Z-value NORMSINV(F)

0.01 7 �2.326

0.05 12 �1.645

0.10 15 �1.282

0.15 20 �1.036

0.20 23 �0.842

0.25 100 �0.674

0.30 105 �0.524

0.35 110 �0.385

0.40 120 �0.253

0.45 130 �0.126

0.50 140 0.000

0.55 150 0.126

0.60 160 0.253

0.65 500 0.385

0.70 520 0.524

0.75 530 0.674

0.80 550 0.842

0.85 570 1.036

0.90 590 1.282

0.95 610 1.645
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The estimated contribution of each of the mechanisms is given by:
Mechanism A

FA ¼ Rank Fð Þ
0:22

ð7:11Þ

Mechanism B

FB ¼ Rank Fð Þ � 0:22
0:62� 0:22

ð7:12Þ

Mechanism C

FC ¼ Rank Fð Þ � 0:62
1� 0:62

ð7:13Þ

In Table 7.5, the three separate mechanisms are now shown. Shown in Fig. 7.7 are
the individual distributions (t50, σ) for each mechanism.

Table 7.5 Separation of mechanisms for distribution plotting

Rank
F

Adjusted by
point of
Inflection FA ¼
[Rank F]/0.22

Adjusted by points
of Inflection FB ¼
[Rank F � 0.22]/
(0.62 � 0.22)

Adjusted by point
of Inflection FC ¼
[Rank F � 0.62]/
(1 � 0.62)

Time-
to-
failure
(h)

Normal
distribution
Z-value
NORMSINV
(F)

0.01 0.05 7 �1.691

0.05 0.23 12 �0.748

0.1 0.45 15 �0.114

0.15 0.68 20 0.473

0.2 0.91 23 1.335

0.25 0.08 100 �1.440

0.3 0.20 105 0.842

0.35 0.33 110 �0.454

0.4 0.45 120 �0.126

0.45 0.58 130 0.189

0.5 0.70 140 0.524

0.55 0.83 150 0.935

0.6 0.95 160 1.645

0.65 0.08 500 �1.412

0.7 0.21 520 �0.805

0.75 0.34 530 �0.407

0.8 0.47 550 �0.066

0.85 0.61 570 0.267

0.9 0.74 590 0.634

0.95 0.87 610 1.119
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3.2 Mixed Multiple Failure Mechanisms

Sometimes multiple failure mechanisms are occurring in a single set of time-to-
failure data but with no obvious points of inflection to help separate the mechanisms.
In this case, a Kaplan–Meiers type of decoupling method is useful for separating the
mechanisms. The method is illustrated below.

Time-to-failure data is shown in Table 7.6. Suppose that, through electrical or
physical failure analysis, one can identify that the failures are a mixture of two failure
mechanisms: type A and type B. The questions that we would like to answer are:
(1) what would the failure distribution look like if only mechanism A was active; and
(2) what would the failure distribution look like if only mechanism B was active?

The cum fraction FA calculation for A-type failures alone is complicated by the
fact that the B-type failures are occurring during the same time intervals, and vice
versa. For this reason, one will find it more useful to work with the survivor
probability (1 � FA) rather than the cum failure probability FA. One must take
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1 10 100 1000 10000

Time (hr)

(t50)B = 124.0hr

(t50)A = 15.1hr

(t50)C = 557.9hr

sB = 0.17

sA = 0.41

sC = 0.083

A B C

Fig. 7.7 The three mechanisms, shown in Fig. 7.6, are now separated with the individual t50 and σ
values determined for each

Table 7.6 Mixed multiple failure mechanisms

Sample size (SS) ¼ 100

Read points (h) Cum F Mechanism A (Cum # fails) Mechanism B (Cum # fails)

0 0 0 0

500 0.02 0 2

1,000 0.22 5 17

1,500 0.50 12 38

2,000 0.72 20 52
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into account that both failure mechanisms are occurring during the same intervals
and when B-failures occur they are taking away from the effective sample size for A,
and vice versa.

One can take advantage of the fact that the probability (1� F)i +1 of surviving the
ith + 1 time interval must be equal to the probability (1 � F)i of surviving the
previous ith time interval times the probability of surviving the present time interval.
For example:

1� FAð Þiþ1 ¼ 1� FAð Þi
SS� Cum#forAð Þiþ1 � Cum#forBð Þiþ1

SS� Cum#forBð Þiþ1

� �
ð7:14Þ

and

1� FBð Þiþ1 ¼ 1� FBð Þi
� SS� Cum#forAð Þiþ1 � Cum#forBð Þiþ1

SS� Cum#forAð Þiþ1

� �
: ð7:15Þ

In the above equations, SS is the beginning sample size (at time zero) and Cum #
represents the cumulative number of failures for each mechanism (A or B) at the
indicated time interval. Shown in Table 7.7 is an example of how to use the above
equations to generate the individual cumulative failure distributions for mechanisms
A and B separately. Figure 7.8 shows the individual Weibull plots4 of the failure
mechanisms for A and B, along with their characteristic Weibull parameters (t63, β).

Shown in Fig. 7.8 are the Weibull plots of FA and FB for the separated mecha-
nisms A and B, respectively, for the data taken from Table 7.7. From Fig. 7.8, one
can see that the characteristic times (t63) are different for the two failure mechanisms
as well as their Weibull slopes (β).

Table 7.7 Decoupling of mixed multiple failure mechanisms

Sample size (SS) ¼ 100

Read points (h) Cum F
Mechanism A
(Cum # fails)

Mechanism B
(Cum # fails) 1 � FA 1 � FB FA FB

0 0 0 0 1 1 0 0

500 0.02 0 2 1.00 0.98 0 0.02

1,000 0.22 5 17 0.94 0.80 0.06 0.20

1,500 0.50 12 38 0.76 0.46 0.24 0.54

2,000 0.72 20 52 0.44 0.16 0.56 0.84

4A lognormal distribution could also have been used and would produce similar results.
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Problems

1. Time-to-rupture data (from a creep study) are shown for steel rods that were held
at a fixed level of stress at very high temperatures until rupture occurred. The
time-to-failure data are shown in hours. Find the lognormal t50 and σ that
describes the data.

44.0 43.3 49.0 36.0 70.8

50.3 45.2 47.4 36.3 68.3

65.6 51.4 43.2 39.4 70.7

54.5 58.3 42.5 52.2 56.5

41.1 60.2 42.7 63.6 40.0

Answers: t50 ¼ 49.8 h, σ ¼ ln(t50/t16) ¼ 0.22

2. Given the lognormal distribution (t50 ¼ 49.8 h, σ ¼ 0.22) from Problem 1,

(a) What is the expected time for 0.1 % of the steel rods to rupture?
(b) What is the expected time for 99.9 % of the steel rods to rupture?

Answers: (a) t0.1 % ¼ 25.2 h, (b) t99.9 % ¼ 98.3 h

3. Given the lognormal distribution (t50 ¼ 49.8 h, σ ¼ 0.22) from Problem 1, what
fraction of failures occur between 35 and 55 h?

Answer: 0.620
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Time (hrs)

L
n

[-
L

n
(1

-F
)]

10000

Fig. 7.8 Separation of mixed multiple failure mechanisms is illustrated. The characteristic Weibull
parameters are given for each mechanism
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4. Using the time-to-rupture data in problem 1, find the Weibull distribution
that gives the best fitting to the data. What are the values for t63 and the Weibull
slope β?

Answer: t63 ¼ 55.2 h, β ¼ 5.4

5. Given the Weibull distribution (t63 ¼ 55.2 h, β ¼ 5.4) from Problem 4,

(a) What is the expected time for 0.1 % of the steel rods to rupture?
(b) What is the expected time for 99.9 % of the steel rods to rupture?

Answers: (a) t0.1 % ¼ 15.4 h, (b) t99.9 % ¼ 79.0 h

6. Given the Weibull distribution (t63 ¼ 55.2 h, β ¼ 5.4) from Problem 4, what
fraction of the failures occurred between 35 and 55 h?

Answer: 0.543

7. Using the normal distribution in Chap. 5, fit the data shown in Table 7.1.

(a) What are the values of t50 and sigma for the normal distribution?
(b) Compare your normal fit to the lognormal-fit shown in Fig. 7.3. Which

distribution gives the better fitting, normal or lognormal?

Answers:

(a) t50 ¼ 1,573 h, σ ¼ 576 h,
(b) Lognormal distribution gives a better fitting to this data set.

8. The following time-to failure data was collected and found to have two failure
mechanisms in the time-to-failure data.

Cum fraction
F

Time-to-failure
(h)

0.05 16

0.09 20

0.15 25

0.22 30

0.3 35

0.38 42

0.45 104

0.51 110

0.63 118

0.68 127

0.75 135

0.82 143

0.87 150

0.9 155

(a) Perform a lognormal plot of the above data.
(b) Find the point of inflection which separates the two mechanisms.
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(c) Replot the data for the two mechanisms.
(d) What are the (t50, σ) values for the two mechanisms?

Answers:

(b) Point of inflection: F ¼ 0.42,
(d) Mechanism A: t50 ¼ 27.3 h, σ ¼ 0.4,

Mechanism B: t50 ¼ 131.1 h, σ ¼ 0.17.

9. Using the time-to failure data (shown in the table in Problem 8):

(a) Perform a Weibull plot of the above data.
(b) Find the point of inflection which separates the two mechanisms.
(c) Replot the data for the two mechanisms.
(d) What are the (t63, β) values for the two mechanisms?

Answers:

(b) Point of inflection: F ¼ 0.42,
(d) Mechanism A: t63 ¼ 32.3 h, β ¼ 2.99 Mechanism B: t63 ¼ 139.6 h, β ¼ 6.29.
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Chapter 8
Failure Rate Modeling

For a collection of devices, it is critically important to be able to understand the
expected failure rate for the devices. For the supplier of such devices, the expected
failure rate will be an important indicator of future warranty liability. For the
customer, the expected failure rate will be an important indicator of future satisfac-
tion. For mission-critical1 applications, it is of paramount importance for one to
know that the expected failure rate will be extremely low.

1 Device Failure Rate

The survivor failure rate for a collection of devices is of great reliability importance.
The failure rate equation, by which the devices are expected to fail, is given by:

dM
dt

¼ �λ tð ÞM tð Þ: ð8:1Þ

M(t) represents the number of survivors at any time t, and λ(t) represents the
instantaneous survivor failure rate. One can write

M tð Þ ¼ M 0ð Þ 1� F tð Þ½ �, ð8:2Þ

1The use of the expression mission critical came into vogue for space applications. In space
applications, device repair or replacement is very difficult, if not impossible. Therefore, it is
imperative that such devices have extremely low failure rates. However, today, life-support
implantable devices are widely used. If one of these devices is part of your life-support system,
there is little doubt that you would describe this as a mission-critical application.
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where M(0) is the number of devices at time zero and F(t) is the cumulative failure
probability as previously discussed in Chap. 7. Using the equations above, the
instantaneous survivor failure rate λ(t) is given by:

λ tð Þ ¼ � 1
M tð Þ

dM
dt

¼ � 1
M 0ð Þ 1� F tð Þ½ � �M 0ð Þ dF

dt

� �

¼ f tð Þ
1� F tð Þ ,

ð8:3Þ

where f(t) is the probability density function (from Chap. 7).

2 Average Failure Rate

Separating the variables and integrating, the solution to Eq. (8.1) can be written as2:

Z t

0

dM
M tð Þ ¼ �

Z t

0

λ tð Þdt ¼ �t

Rt
0
λ tð Þdt
Rt
0
dt

0
BBB@

1
CCCA ¼ � λh it, ð8:4Þ

where <λ> is the time-averaged failure rate. The solution to Eq. (8.4) becomes:

M tð Þ ¼ M 0ð Þexp � < λ > t½ �: ð8:5Þ

Although the failure rate λ(t) is, in general, a function of time, the average failure
rate <λ> over some interval 0–t can often be useful and requires closer attention:

< λ >¼

Z t

0

λ tð Þdt

Z t

0

dt

¼ 1
t

Z t

0

f tð Þ
1� F tð Þ dt

¼ 1
t

Z t

0

dF tð Þ=dt
1� F tð Þ dt ¼

1
t

Z t

0

dF
1� F tð Þ

¼ 1
t
ln

1
1� F tð Þ

� �
:

ð8:6Þ

2The identity 1 ¼ t=

Z t

0
dt is used in Eq. (8.4).
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Equation (8.6) can be approximated for small cum fraction F by,

λh i ffi F tð Þ
t

: ð8:7Þ

Remember that <λ> represents the average failure rate over the interval 0–t.
Therefore, during reliability testing, the average failure rate is usually estimated by:

λh i ¼ Cum # Fai1ures
Tota1 #Device � h ¼ F � SS

SS � # Test hð Þ ¼
F

# Test h
: ð8:8Þ

In the equation above, SS is the sample size. The unit of failure rate is the failure
in time (FIT) and represents 1 failure per billion device-hours (1 FIT ¼ 1 failure/109

dev•h ¼ 10�9 fails/dev•h ¼ 10�9/h).3 While the instantaneous failure rate is obvi-
ously more precise, the average failure rate can often be useful, especially for very
complex/multi-component systems and when estimating cum fraction F.

2.1 Lognormal Average Failure Rate

The average failure rate, using the lognormal cumulative failure distribution F(t)
from Chap. 7, becomes:

λh ilog normal ¼
1
t
ln

1
1� F tð Þ

� �

¼ 1
t
ln

1

1� 1
2
erfc

ln t50ð Þ � ln tð Þ
σ

ffiffiffi
2

p
� �

2
664

3
775 for t � t50ð Þ

¼ 1
t
ln

1
1
2
erfc

ln tð Þ � ln t50ð Þ
σ

ffiffiffi
2

p
� �

2
664

3
775 for t � t50ð Þ:

ð8:9Þ

3In order to be consistent with Eq. (8.1), the true unit of failure rate λ must be in reciprocal time.
Often the pseudo units (failures and devices) are introduced for emphasis and to facilitate a little
bookkeeping. However, the true units of the FIT are: 1 FIT ¼ 10�9/h.
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2.2 Weibull Average Failure Rate

The average failure rate, using the Weibull cumulative failure distribution F(t) from
Chap. 7, is given by:

λh iWeibull ¼
1
t
ln

1
1� F tð Þ

� �
¼ 1

t
ln

1

exp � t

t63

� �β
" #

2
664

3
775

¼ 1
t

t

t63

� �β

:

ð8:10Þ

Example Problem 1
The observed average failure rate for a collection of devices was found to be:
<λ> ¼ λ0 ¼ 1,000 FITs. If one starts with 50,000 devices at time zero, how
many devices are expected to fail after 1 year? [Note: 1 year ¼ 8,760 h]

Solution

M tð Þ ¼ M0exp �λ0tð Þ
)

M t ¼ 8; 760hð Þ ¼ 50; 000devicesð Þexp � 1; 000FITsð Þ 10�9=h
1FIT

� �
8; 760hð Þ

� �
¼ 4, 9564:

#Failures ¼ M0 �M t ¼ 8; 760hð Þ ¼ 50, 000� 49, 564 ¼ 436:

Example Problem 2
Suppose that one has a system which is made up of 1,000 components, with
the components having an average failure rate of 100 FITs. What would be the
mean (average) time between failures for such a system?

Solution

Average System Failure Rate¼ 1; 000devicesð Þ � 100FITsð Þ
¼ 1; 000devicesð Þ � 100failures

109device � h
� �

¼ 1failure

104h
:

(continued)
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Since 104 h ¼ 1.14 years, then one would expect this system to fail
(on average) once every 1.14 year. This represents the mean-time-between-
failures (MTBF ¼ 1/<λ>) and is a very important reliability parameter. MTBF
describes, on average, the level of reliability problems that can be expected for
such a system.

3 Instantaneous Failure Rate

The instantaneous survivor failure rate is generally of greater value to the reliability
engineer than simply the average failure rate.4 Both the lognormal and Weibull
instantaneous failure rates are discussed in detail.

3.1 Lognormal Instantaneous Failure Rate

Using Eq. (8.3), with f(t) and F(t) found in Chap. 7 Eqs. (8.1) and (8.2), respectively,
then the lognormal instantaneous failure rate becomes:

λ tð Þ ¼

1

σt
ffiffiffiffiffi
2π

p exp
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4A common-experience analogy is perhaps useful—the instantaneous speed that you drive is
usually far more important than your average speed. Speeding tickets are normally issued based
on instantaneous speed, not average speed!
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3.2 Weibull Instantaneous Failure Rate

Using Eq. (8.3), and f(t) and F(t) found in Eqs. (8.5) and (8.6), respectively, then the
Weibull instantaneous failure rate takes on a relatively simple form:

λ tð Þ ¼ β

t63

� �
t

t63

� �β�1

ð8:12Þ

The Weibull failure rate is widely used because it describes weakest link type
failure mechanisms very well. Also, another reason for its popularity is that its form
is relatively simple, versus the lognormal failure rate, Eq. (8.11). Note that for β ¼
1, the failure rate is a constant (independent of time). It will be shown, in example
problem 3, that the Weibull failure rate decreases when β < 1, increases when β >
1, and is constant for β ¼ 1.

Example Problem 3
In a reliability test, it was found that the characteristic Weibull lifetime was
t63 ¼ 87,600 h. Determine the Weibull instantaneous failure rate curve for:
β ¼ 0.5, β ¼ 1.0, and β ¼ 1.5.

Solution
Shown in Fig. 8.1 is the failure rate λ(t) in FITs, given by Eq. (8.12).
In Fig. 8.1a, the failure rate is shown with a linear scaling of the time. In
Fig. 8.1b, the failure rate is shown with a logarithmic scaling of the time.
These figures indicate that for β ¼ 0.5, the failure rate decreases with time.
For β ¼ 1.0, the failure rate is constant. For β ¼ 1.5, the failure rate increases
with time.

4 Bathtub Curve

The failure rate curve for devices (either electrical or mechanical) generally takes the
form shown in Fig. 8.2. From its obvious shape, this reliability curve is commonly
referred to as the bathtub curve for reliability. There are three distinct reliability
regions associated with this curve and these are highlighted in (Fig. 8.2). First,
during the early stages of device use, the failure rate is relatively high and this region
is referred to as the early failure rate (EFR) region. The failures occurring in the EFR
region are generally due to rather gross defects. Second, after the initial high EFR
portion of the curve, a much lower and stable failure rate region occurs and this
region is referred to as the intrinsic failure rate (IFR) region. The IFR fails can be due
to very small defects in the materials. After the IFR region, one usually has a region
of rapid turn-up in the failure rate which is referred to as the Wear-out region. The
Wear-out region is driven by normal material/device degradation, as discussed in
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Chap. 3. This Wear-out region is strongly dependent of the level of stress and
temperature, as discussed in Chap. 5.

The old reliability joke among air travelers—if you are either scheduled for the
maiden flight on a new airliner or scheduled for a trip on an airliner that has been in
service for more than 25 years, then you may want to reconsider your travel plans!
In the former case, one worries about EFR and in the later case one worries about
Wear-out. If you are told that the plane is about 10 years old, with outstanding
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Fig. 8.1 (a) Failure rate is observed to decrease with time for β < 1, failure rate is constant for β ¼
1, and failure rate is observed to increase for β > 1. Linear time-scaling is shown. (b) Failure rate is
observed to decrease with time for β < 1, failure rate is constant for β ¼ 1, and failure rate is
observed to increase for β > 1. Logarithmic time-scaling is shown

4 Bathtub Curve 115



reliability and service record, then you should be at the bottom of the bathtub curve
(lowest failure rate)—so sit back and enjoy the flight!

Depressing as the subject may be, the bathtub curve also describes the mortality
rate for humans. The death rate for newborns is relatively high during the first few
hours of life because of birth defects in critically important organs (heart, lungs,
kidneys, brain, etc.). This is the EFR portion of the curve for humans5 and helps to
explain why doctors and parents generally have more apprehension/anxiety during
the first 24 h of a newborn’s life. After this initial period, the level of concern tends to
reduce with time and drops rather sharply after 1 day, 1 week, 1 month, etc. After a
year or so, the mortality rate tends to flatten (bottom of bathtub curve) and the
mortality rate is at its lowest value (sweet part of the reliability curve). Unfortu-
nately, however, after about 70+ years of use, your components (organs) start
wearing out and the system (your body) starts to fail.

5 Failure Rate for Electronic Devices

The EFR portion of the reliability curve for electronic devices can be very similar to
that shown in Fig. 8.2. This EFR region, for integrated circuits, is dominated by
manufacturing defects (materials with extremely low breakdown strengths) and
shows a rather sharp reduction in failure rate with time. This EFR region (higher
failure-rate region) can last for a year or more at normal operating voltage and
temperature conditions: (Vop, Top). This can be a reliability headache (very expen-
sive) for the supplier because the warranty period is generally 1 year. To avoid the
supplier headaches, from irate customers having initially very high failure rates, the
supplier may sometimes choose to exercise the devices for a period of time
(to eliminate the defective devices) before sending the product to their customers.
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Fig. 8.2 Bathtub reliability
curve is used to describe
device failure rate
characteristics for nearly all
devices

5This is why the EFR region is also referred to as infant mortality.
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This period of time, in which the devices are exercised to eliminate the defective
devices, is often called burn-in.

The IFR region still contains some relatively small defects (which tend to reduce
the breakdown strength of the materials). The failure rate that is observed at the
bottom of the bathtub curve is nearly constant and is due primarily to those intrinsic
weaknesses (intermediate breakdown strengths) found in a population of otherwise
good devices. This portion of the curve is referred to as the intrinsic failure-rate (IFR)
region.

Finally, if the devices are operated long enough, they will eventually start to fail
even though the material strengths may be excellent; this region is referred to as the
Wear-out region. The Wear-out region is correlated with the materials-type selec-
tion, design rules used, and the use conditions.

In order to reduce the high failure rate during the EFR period, burn-in is
sometimes needed; but, 1 year of burn-in at nominal operating conditions (Vop,
Top) is not practical. If, however, one increases the normal operating conditions to
(Vstress, Tstress), then one can accelerate the time-to-failure process for these defective
devices. Hopefully, under the accelerated conditions, the defective devices will fail
much more rapidly (hours, minutes, or even seconds) versus the 1 year period of
normal conditions. This all depends on the acceleration factor (subject of Chaps. 9
and 10).

One also has to be careful that the accelerated burn-in process does not signifi-
cantly weaken the good devices. It is assumed that the design and materials used in
the good devices are such that these devices have many years of reliable operation;
therefore, losing 1 year of lifetime is rather insignificant. Again, all this depends on
the acceleration factor used for the burn-in process.

Example Problem 4
The reliability of 5,000 devices was monitored during a 10-year period. The
failures are shown in Table 8.1.

(a) Construct the failure rate curve (bathtub curve).
(b) How long should the devices have been burned-in so that the shipped

product had a failure rate of < 100 fits?
(c) If wear out is defined as the time for the failure rate to exceed 100 fits,

when did this product start to wear out?

(continued)

Table 8.1 Observed failure data for 5,000 devices

Sample size ¼ 5,000

Time (year) 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5 6 7 8 9 10

Number of fails 15 1 0 0 0 1 2 2 2 2 2 2 2 15 25
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Solution

(a) The failure data, provided in this problem, is first reorganized in Table 8.2
below for relatively easy data analysis. Shown in Fig. 8.3 is the cumulative
fraction failed F for the complete data set. The EFR, IFR, and Wear-out
regions are also indicated. The EFR region is treated as an independent
failure rate contributor with the cum fraction FEFR calculated using the
entire sample size of 5,000 (see Table 8.2). The IFR region is also treated as
an independent failure rate contributor but uses a reduced sample size of
4,984. The wear-out region is also treated as an independent failure rate
contributor, but with a further reduced sample size of 4,971. The total failure
rate will be a sum of these independent contributors to the failure rate.

The characteristic Weibull parameters (t63, β), which best describe each
of the independent regions (EFR, IFR, Wear-out), are shown in Fig. 8.4.
From these characteristic values, and using the Weibull failure rate
Eq. (8.12), the constructed bathtub curve is shown in Fig. 8.5

(b) Using the above bathtub curve (Fig. 8.5) one can see that the device/
product should be burned-in for at least 0.5 years, if the goal is to ship
product with a failure rate of < 100 FITs.

(c) One can see, from Fig. 8.5, that the failure rate again exceeds 100 FITs
after 6.9 years of use and thus defines the start of wear out.

It must be noted that it is probably unrealistic to burn-in devices for 0.5 years
(6 months) before being shipped; thus, accelerated methods have to be developed
which will accelerate this burn-in time. Normally this acceleration is achieved
through the use of elevated voltages, elevated mechanical stresses, and/or elevated
temperature. This will be discussed in more detail in Chaps. 9 and 10.
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Problems

1. For certain implantable medical devices, the median time-to-failure is t50 ¼
87,600 h (10 years) and a logarithmic standard deviation of σ ¼ 0.7. Assuming a
lognormal distribution:

(a) What is the instantaneous failure rate at 8 years?
(b) What is the average failure rate after 8 years?
(c) What fraction of the devices is expected to fail after 8 years?

Answers:

(a) λ @ t ¼ 70,080 h ¼ 1.24 � 10�5/h
(b) <λ> after 780,080 h ¼ 6.71 � 10�6/h
(c) F ¼ 0.375

2. A certain collection of capacitors has a Weibull time-to-failure distribution with
a characteristic time-to-failure of t63 ¼ 100,000 h and a Weibull slope of β ¼
1.2.

(a) What is the instantaneous failure rate at 9 years?
(b) What is the average failure rate after 9 years?
(c) What fraction of the capacitors is expected to fail after 9 years?

Answers:

(a) λ @ t ¼ 78,840 h ¼ 1.14 � 10�5/h
(b) <λ> after 78,840 h ¼ 9.54 � 10�6/h
(c) F ¼ 0.528
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Fig. 8.5 Bathtub reliability curve is created when the independent failure rate contributors are
added: EFR + IFR + Wear-Out
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3. For a mechanical component, fatigue data indicates that the median cycle-to-
failure is (CTF)50 ¼ 26,000 cycles and a logarithmic standard deviation of σ ¼
1.2. Assuming a lognormal distribution:

(a) What is the instantaneous failure rate at 18,000 cycles?
(b) What is the average failure rate after 18,000 cycles?
(c) What fraction of the components is expected to fail after 18,000 cycles?

Answers:

(a) λ @ 18,000 cycles ¼ 2.84 � 10�5/cycle
(b) <λ> after 18,000 cycles ¼ 2.65 � 10�5/cycle
(c) F ¼ 0.380

4. Certain mechanical components are found to corrode and can be described by
a lognormal time-to-failure distribution with a characteristic time-to-failure of
t50 ¼ 50,500 h and a σ ¼ 1.2.

(a) What is the instantaneous failure rate at 40,000 h?
(b) What is the average failure rate after 40,000 h?
(c) What fraction of the components is expected to fail after 40,000 h?

Answers:

(a) λ @ t ¼ 40,000 h ¼ 1.41 � 10�5/h
(b) <λ> after 40,000 h ¼ 1.37 � 10�5/h
(c) F ¼ 0.423

5. Certain integrated circuits are found to fail, due to channel hot-carrier injection,
and can be described byWeibull time-to-failure distribution with a characteristic
time-to-failure of t63 ¼ 75,000 h and a Weibull slope of β ¼ 2.0.

(a) What is the instantaneous failure rate at 60,000 h?
(b) What is the average failure rate after 60,000 h?
(c) What fraction of the circuits is expected to fail after 60,000 h?

Answers:

(a) λ @ t ¼ 60,000 h ¼ 2.13 � 10�5/h
(b) <λ> after 60,000 h ¼ 1.07 � 10�5/h
(c) F ¼ 0.473

6. Certain automobile tires are found to wear out according to a lognormal wearout
distribution with characteristic parameters: (wear out)50 ¼ 38,000 miles with a
σ ¼ 0.6.

(a) What is the instantaneous wear-out rate at 32,000 miles?
(b) What is the average wear-out rate after 32,000 miles?
(c) What fraction of the tires is expected to wear out after 32,000 miles?
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Answers:

(a) λ @ 32,000 miles ¼ 3.25 � 10�5/mile
(b) <λ> after 32,000 miles ¼ 1.53 � 10�5/mile
(c) F ¼ 0.388

7. Certain hinges on doors are found to fail according to a Weibull distribution
with the parameters: (number of closures)63 ¼ 25,000 with a Weibull slope of
β ¼ 0.5.

(a) What is the instantaneous failure rate at 18,000 closures?
(b) What is the average failure rate after 18,000 closures?
(c) What fraction of hinges is expected to fail after 18,000 closures?

Answers:

(a) λ @ 18,000 closures ¼ 2.36 � 10�5/closure
(b) <λ> after 18,000 closures ¼ 4.71 � 10�5/closure
(c) F ¼ 0.572

8. Crowns, from a certain dental supply company, are found to fail according to a
Weibull distribution with the parameters: t63¼ 15.0 years and aWeibull slope of
β ¼ 1.0.

(a) What is the instantaneous failure rate at 12 years?
(b) What is the average failure rate after 12 years?
(c) What fraction of crowns is expected to fail after 12 years?

Answers:

(a) λ @ t ¼ 12 years ¼ 6.67 � 10�2/year
(b) <λ> after 12 years ¼ 6.67 � 10�2/year
(c) F ¼ 0.551

9. Certain cell phones can start to fail after a number of drops. (Note: dropped
phones not dropped calls.) The failures in a certain test are found to be described
well by a Weibull distribution with the parameters: (number of drops)63 ¼
88 drops and Weibull slope of β ¼ 0.6.

(a) What is the instantaneous failure rate at 50 drops?
(b) What is the average failure rate after 50 drops?
(c) What fraction of phones is expected to fail after 50 drops?

Answers:

(a) λ @ 50 drops ¼ 8.55 � 10�3/drop
(b) <λ> after 50 drops ¼ 1.42 � 10�2/drop
(c) F ¼ 0.510

10. Temperature-cycling of bi-metallic layers was found to produce delamination
type failures conforming to a lognormal distribution with parameters: median
cycle-to-failure of (cycles-to-failure)50 ¼ 1,600 cycles and σ ¼ 0.9.
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(a) What is the instantaneous failure rate at 1,300 cycles?
(b) What is the average failure rate after 1,300 cycles?
(c) What fraction of components is expected to fail after 1,300 cycles?

Answers:

(a) λ @ 1,300 cycles ¼ 5.62 � 10�4/cycle
(b) <λ> after 1,300 cycles ¼ 4.04 � 10�4/cycle
(c) F ¼ 0.409
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Chapter 9
Accelerated Degradation

In Chap. 2 we learned that a stressed material was at a higher Gibbs Potential and
therefore more unstable. The stressed material will spontaneously degrade, but at
what rate? We might suspect, and rightfully so, that higher stress levels will make a
material even more unstable and therefore accelerate the degradation rate; also, our
intuition might suggest that the degradation rate for a material is temperature
dependent. This chapter will develop the needed equations that show that this is
indeed the case.

By accelerating the degradation rate, one means: accelerating the normal deg-
radation process through the use of elevated stress and/or temperature. Accelerated
testing is intended to shorten the normal time-to-failure process (which could take
years), without changing the physics of failure. The objective of accelerated testing
is to understand the stress and temperature dependence (kinetics) of failure mech-
anisms so that reliability estimations and reliability improvements can be made
through: better design rules, better materials selection criteria, and/or better pro-
cess/manufacturing control. Also, reliability improvements can be made through:
defect reduction, burn-in, intrinsic failure-rate reduction, and wear-out prevention.

1 Impact of Temperature on Degradation Rate

In Chap. 2 we discussed how a generalized stress acting on a material increases its
Gibbs Potential and thus makes the material less stable and more prone to degrada-
tion. It is a common experience that devices (automobile tires, valve springs, shock
absorbers, computers, TVs, cell phones, iPads, etc.) generally degrade faster at
higher stress levels and at higher temperatures. Therefore, we need a Gibbs Potential
description for material degradation that incorporates the fact that either increased
stress ξ or increased temperature T will cause a material to degrade at a faster rate.

Shown in Fig. 9.1 is a Gibbs Potential/Free-Energy description of the material
degradation reaction. Initially (at time-zero), as we can see from Fig. 9.1, the
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material/device is in a metastable state with a Gibbs-Potential/Free-Energy of G1.

However, one knows from experience that the material will degrade with time thus
moving towards the lower Gibbs Potential/Free-Energy degraded state G2. The
driving force for this material degradation is a difference in the Gibbs-Potential/
Free-Energy ΔG. This implies that G2-G1 must be negative for the degradation
process to proceed. To avoid any ambiguities with sign convention (in all of the
degradation reaction-rate equations that follow in this chapter) we have used the
absolute value: ΔG ¼ |G2 � G1| in the rate equations. It will be understood that the
free energy of the degraded state G2 must be lower than the initial state G1 for the
degradation reaction to proceed. Therefore, the larger ΔG the stronger is the driving
force for degradation.

While the driving force for degradation is a free energy difference ΔG between
the initial state and the degraded state, the rate of the degradation reaction is limited
by the activation energy ΔG*. Generally heat and/or work is required to overcome
this activation energy barrier. In analogy with chemical reaction rates, one can think
of the degradation rate in terms of a degradation rate constant k. The forward
(or degradation) reaction rate kforward (Fig. 9.1) is given by:

kforward ¼ k0exp �ΔG∗

KBT

� �
, ð9:1Þ

where k0 is an interaction frequency (taken to be a constant), KB is Boltzmann’s
constant, and T is the temperature (Kelvin).1 The reverse (or recovery) reaction rate
is controlled by:

G1

G2

ΔG*

ΔG

Reaction Coordinates

Fr
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Initial State

Degraded State

Forward Reaction

Reverse Reaction

Fig. 9.1 Free energy
description of material/
device degradation is
illustrated. The initial state is
metastable because the
degraded state has a lower
free energy. The relative
stability of the initial
metastable state is impacted
by the activation energyΔG*

needed to go from the initial
metastable state to the
degraded state. The
degradation rate is generally
controlled by the Boltzmann
probability

1Equation (9.1) represents the Boltzmann probability that atoms in the initial state will obtain the
necessary energy to go over the barrier to the degraded state. It is possible that the atoms can tunnel
through the barrier, but the tunneling probability is very small except for the very lightest of
elements such as hydrogen. For nearly all other elements, the Boltzmann probability is usually
much greater than the tunneling probability. Boltzmann’s constant is 8.62 � 10�5 eV/K.
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kreverse ¼ k0exp � ΔGþ ΔG∗ð Þ
KBT

� �
: ð9:2Þ

Thus, the net degradation reaction rate for material/device is given by
knet ¼ kforward � kreverse:

knet ¼ k0exp �ΔG∗

KBT

� �
1� exp � ΔG

KBT

� �� �
: ð9:3Þ

One can see that the driving force for the net degradation rate is ΔG. If ΔG ¼ 0,
then the net degradation reaction rate is zero, regardless of the activation energy
ΔG*. When the degraded state has a lower free energy than the initial state
(ΔG 6¼ 0), then the activation energy ΔG* becomes critically important in retarding
the degradation reaction. In fact, when ΔG � KBT, then the reverse reaction rate
becomes negligible and Eq. (9.3) reduces simply to:

knet ¼ k0exp �ΔG∗

KBT

� �
: ð9:4Þ

From Eq. (9.4), one can see that the activation energy can be extracted from the
observed degradation rate using:

ΔG∗ ¼ �KB
∂ ln knetð Þ
∂ 1=Tð Þ

� �
: ð9:5Þ

2 Impact of Stress and Temperature on Degradation Rate

Let us now consider the impact of applying a stress ξ to a material and investigate its
impact on the degradation rate. Remember that the stress ξ can be general in nature
(mechanical stress, electrical stress, chemical stress, etc.) and represents any external
agent which can enhance/accelerate the degradation rate. The expected impact of
stress ξ on the Gibbs Potential/Free-Energy is illustrated in Fig. 9.2. The generalized
stress ξ tends to elevate the initial Gibbs Potential making ΔG larger and the
activation energy ΔG* lower.

We expect that a generalized stress ξ acting on a material will increase the
material degradation rate by increasing the free energy difference ΔG between the
initial state (when the stress is initially applied) and the degraded state (which occurs
sometime later). Since ΔG is a function of the generalized stress ξ, then we can use a
Maclaurin Series to expand:
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ΔG¼ ΔGð Þξ¼0 þ ∂ ΔGð Þ
∂ξ

h i
ξ¼0

ξþ • • •

ffi ΔG0 þ cξ:
ð9:6Þ

We have chosen to use a positive sign in front of “c” in the last equation because
we have found (in Chap. 2) that the generalized stress ξ tends to increase ΔG. In fact,
we should note that in Chap. 2 we found that, for many cases, ΔG actually increases
quadratically with stress ξ. For this reason, we choose to write Eq. (9.6) in a more
general form:

ΔG ffi ΔG0 þ bξn, ð9:7Þ

where n � 1 and n is generally determined experimentally.
Likewise, we will assume that a similar Maclaurin series expansion approach can

be taken for the free energy of activation ΔG*:

ΔG∗ ¼ ΔG∗ð Þξ¼0 þ ∂ ΔG∗ð Þ
∂ξ

h i
ξ¼0

ξþ • • •

ffi ΔG∗
0 � aξ:

ð9:8Þ

We have chosen to use a negative sign in front of “a” in the last equation because
we anticipate (from Fig. 9.2) that the stress ξ will tend to decrease ΔG*.

Using Eq. (9.3), along with Eqs. (9.7) and (9.8), the net reaction rate for material/
device degradation becomes:

Unstressed

Stressed
state

Initial StateΔG0

ΔG0*
ΔG0* − aξ

ΔG0
 + bξ

Degraded State

Reaction Coordinates

G
ib

b
s 

P
o

te
n

ti
al

stressed

Fig. 9.2 Free energy impact when a stress ξ is applied to a material/device. The stress ξ can have at
least two impacts on the free energy: (1) the stress can make the initial metastable state even more
unstable by increasing the free energy difference ΔG between the initial and degraded states and
(2) the stress can lower the activation energy ΔG* and this can accelerate the degradation rate
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knet ¼ k0exp � ΔG∗
0 � aξ

� �
KBT

� �
1� exp �

�
ΔG0 þ bξn

KBT

� �� �
: ð9:9Þ

Let us now consider a special case of Eq. (9.9). Suppose that ΔG0 is relatively
small (without stress, the free energy difference between the initial unstressed state
and the degraded state is relatively small). Equation (9.9) now becomes:

knet ¼ k0 exp � ΔG∗
0 � aξ

� �
KBT

� �
1� exp � bξn

KBT

� �� �

¼ k0 exp � ΔG∗
0 � aξ

� �
KBT

� �
2exp � bξn

KBT

� �
sinh

bξn

KBT

� �

¼ 2k0 sinh
bξn

2KBT

� �
exp �

ΔG∗
0 � aξþ b

2
ξn

� �

KBT

8>><
>>:

9>>=
>>;
:

ð9:10Þ

Assuming that bξn>> 2KBT and that ΔG∗
0 >> �aξþ bξn, then due to the

properties of the hyperbolic sinh(x) function2 one obtains for materials under
moderate stress conditions:

knet ¼ k0b

KBT

� 	
ξnexp �ΔG∗

0

KBT

� �
moderate stressð Þ: ð9:11Þ

For materials under very high stress conditions, one obtains

knet ¼ k0exp � ΔG∗
0 � aξ


 �
KBT

� �
very high stressð Þ: ð9:12Þ

One can see from the net degradation reaction-rate equation (in the moderate-
stress region) that the stress ξ has little/no impact on reducing the activation energy
ΔG∗

0 . The degradation reaction-rate is driven purely by increasing the free energy
separation ΔG of the degraded state from the initial metastable state. Thus, ΔG is
impacted by the stress ξ but the activation energy ΔG* is not.3

The stress dependence exponent n is determined from the slope of an ln-ln plot of
Eq. (9.11), while holding the temperature T constant:

2sinh(x) ~ x for small x and sinh(x) ~ exp(x)/2 for large x.
3Note that since it was assumed that the free energy difference between the initial state and the
degraded state was zero, when ξ ¼ 0 then the net degradation rate at low stress levels goes to zero
when b is zero.
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n ¼ ∂ ln knetð Þ
∂ ln ξð Þ

� �
T¼cons tan t

: ð9:13Þ

The activation energy ΔG∗
0 is determined from the slope of an Arrhenius plot of

Eq. (9.11), while holding the stress ξ constant:

ΔG∗ ¼ �KB
∂ ln knetð Þ
∂ 1=Tð Þ

� �
ξ¼cons tan t

: ð9:14Þ

Finally, before we end this section, let us take a closer look at the net degradation
rate constant under very high stress, Eq. (9.12). If the free-energy difference ΔG (for
the unstressed initial metastable state and the degrade state) is not large, then under
high stress conditions what drives the net reaction rate is simply a reduction in free
energy of activation ΔG∗

0 . Also, if a is temperature dependent and has a simple
temperature-dependence of the form: 4

a ¼ ao þ a1KBð ÞT , ð9:15Þ

then the net degradation rate-constant under very high stress becomes:

knet ¼ k0exp a1ξ½ �exp � ΔG∗
0 � a0ξ

� �
KBT

� �
for high stressð Þ: ð9:16Þ

One can see that under very high stress, the degradation rate-constant is expo-
nentially dependent on the stress ξ. Also, one can see that (under very high stress
conditions) the effective activation energy for the degradation rate-constant can be
stress dependent.

3 Accelerated Degradation Rates

Acceleration of the degradation rate occurs when we increase the stress variable ξ
and/or the temperature T. One can compare the degradation rate under a set
of operating conditions (ξop,Top) versus another set of stress conditions (ξstress,Tstress)
by using the acceleration factor AF for degradation. AF for degradation rate is
defined as:

AF ¼ knet ξstress; Tstressð Þ
knet ξop; Top

� � : ð9:17Þ

4A Maclaurin series expansion is carried out (keeping only the first term).

130 9 Accelerated Degradation



Using Eq. (9.17), in conjunction with Eqs. (9.11) and (9.16), one obtains for
moderately stressed materials:

AF ¼ Top

Tstress

� 	
ξstress
ξop

� 	n

exp � ΔG∗

KB

� 	
1

Tstress
� 1
Top

� 	� �
ð9:18Þ

or for very high stressed materials,

AF ¼ exp a1 ξstress � ξop
� �
 �

exp
ΔG∗

0 � aoξop
KBTop

� ΔG∗
0 � aoξstress

� �
KBTstress

� �
: ð9:19Þ

Since T must be expressed in Kelvin, the (Top/Tstress) term in Eq. (9.18) is usually
relatively small compared to the temperature dependence in the exponential term.
Often any temperature dependence in the pre-factor is simply ignored when deter-
mining the acceleration factor. Note that the activation energy in Eq. (9.19), since it
depends on stress, is no longer of the simple Arrhenius type.

Example Problem 1
Suppose that under constant stress the critical parameter for a certain device is
observed to degrade two times faster when the temperature is simply elevated
from 25 �C to 35 �C. What is the effective activation energy associated with
this degradation process?

Solution
Must first convert oC to Kelvin:

25oC ¼ 25þ 273ð ÞK ¼ 298K

35oC ¼ 35þ 273ð ÞK ¼ 308K

Using Eq. (9.18):

AF ¼ 2¼ exp � ΔG∗

KB

� 	
1

Tstress
� 1
Top

� 	� �

) ΔG∗ ¼ KB
ln 2ð Þ

1
Top

� 1
Tstress

� 	

¼ 8:62� 10�5eV=K
� � ln 2ð Þ

1
298K

� 1
308K

� 	

¼ 0:55eV :
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Example Problem 2
During a constant temperature accelerated test, it was noted that a critical
device parameter degradation rate increased by six times as the electric field
was doubled. Using the power-law model, what is the effective field-
dependence exponent n for the observed degradation?

Solution
Using Eq. (9.18):

AF ¼ 6 ¼ Estress

Eop

� 	n

) n ¼ ln 6ð Þ
ln

Vstress

Vop

� 	

¼ ln 6ð Þ= ln 2ð Þ
¼ 2:58:

4 Free Energy of Activation

Reaction rates are often expressed in terms of a free energy difference (ΔG) and free
energy of activation (ΔG*); or, enthalpy difference (ΔH ) and enthalpy of activation
(ΔH*); or, internal energy difference (ΔU ) and internal energy of activation (ΔU*).
This usage can sometimes be confusing—which of these thermodynamic descrip-
tions should be used? This book has chosen to use the Gibbs free energy approach
because it emphasizes the work done on the system. The conditions for which it is
acceptable to use the enthalpy approach, or the internal energy approach, are now
discussed.

Changes in Gibbs free energy ΔG can be written as:

ΔG ¼ ΔH � TΔS, ð9:20Þ

where G is the Gibbs free energy, ΔH (¼ΔU + pΔV ) is the enthalpy, T is the
temperature (K ), and S is the entropy. Similarly, the free energy of activation can be
written as:

ΔG∗ ¼ ΔH∗ � TΔS∗: ð9:21Þ

Referring to Fig. 9.1 and Eq. (9.3), the net reaction rate (knet ¼ kforward – kreverse)
can be written as:
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knet ¼ k0 exp �ΔG∗

KBT

� �
1� exp � ΔG

KBT

� �� �

¼ k0 exp
ΔS∗

KB

� �
exp �ΔH∗

KBT

� �
1� exp � ΔG

KBT

� �� �

¼ k1 exp �ΔH∗

KBT

� �
1� exp � ΔG

KBT

� �� �
:

ð9:22Þ

Thus, for degradation reactions strongly favored in the forward direction
(ΔG � KBT), the net reaction rate constant becomes:

knet ¼ k1 exp �ΔH∗

KBT

� �
: ð9:23Þ

One can see that the only significant difference between Eqs. (9.4) and (9.23) is in
the pre-factor. Thus, for reactions that are strongly favored in the forward direction,
one can safely use either the free energy of activation ΔG* or the enthalpy of
activation ΔH*.

Also, since

ΔH ¼ ΔU þ pΔV , ð9:24Þ

then if little/no change occurs in the solid’s volume during the degradation, the pΔV
term is often ignored and one uses the approximation for solids: ΔHffi ΔU and ΔH∗

ffi ΔU∗.

5 Real Versus Virtual Stresses

If one applies a stress to a material and it produces a time-to-failure distribution
which is strongly dependent on the material dimensions, then the stress will be
referred to as a virtual stress. If one applies a stress to a material and it produces a
time-to-failure that is approximately independent of the material dimensions, then it
will be referred to as a real stress. A few examples of real versus virtual stresses are
given below.

Current I flowing through a conductor may eventually cause electromigration-
induced failure, but the observed time-to-failure (TF) is strongly dependent on
the cross-sectional area A of the conductor. However, if one uses current density
J (¼I/Area) instead of current I, then the TF depends only on the magnitude of J and
is approximately independent of the cross-sectional area of the conductor. In this
case, one would describe J as a real stress and I as a virtual stress.
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In dielectrics, if one ramps the voltage to breakdown, and records the breakdown
voltage Vbd, one finds that Vbd is strongly dependent on the dielectric thickness
tdielectric. However, if electric field E (¼V/tdielectric) is used instead of voltage V, then
one finds that the breakdown field Ebd is approximately independent of dielectric
thickness. In this case, one would describe E as a real stress and V as a virtual stress.

In mechanical devices, if one applies a large tensile force F to a member, the
member may eventually fail with time due to creep; but, the time-to-failure is
strongly dependent on the cross-sectional area A of the member. However, if tensile
stress σ (¼F/A) is used instead of force F, then the time-to-failure TF depends only
on the magnitude of the stress σ and TF is approximately independent of the material
dimensions. Thus, σ will be referred to as a real stress and the force F as a virtual
stress.

Real stresses are generally preferred, when reporting time-to-failure data, because
it is much more likely that someone else will be able to reproduce your time-to-
failure results. Time-to-failure results using virtual stresses are very difficult to
reproduce unless someone uses exactly the same material dimensions. As an addi-
tional reminder, generally, if it is a real stress, tables can be found listing a
breakdown strength for the material (the stress level at which nearly instantaneous
time-to-failure can be expected). For example, the rupture strength for steel occurs at
a mechanical stress level of σrupture 	 2GPa; the dielectric breakdown strength of
SiO2 dielectric occurs at an electric field of EBD 	 10MV/cm; or the fusing current
density of aluminum occurs at a level of JFuse 	 20MA/cm2. Tables listing virtual
stresses [breakdown force for mechanical systems, or breakdown voltage for dielec-
trics, or breakdown current for conductors] are of relatively little value (because the
value changes with material dimensions) and therefore generally cannot be found in
tables. In this text, when we refer to stress, it is implied that it is a real stress, unless
otherwise stated.

Problems

1. The corrosion-rate for a metal component doubles from 75 to 85�C. What is the
effective activation energy Q associated with this corrosion rate?

Answer: Q ¼ 0.74 eV

2. The threshold voltage Vth degradation rate for a MOSFET device actually
decreases by 40% from 25 to 50�C. What is the effective activation energy
Q associated with this degradation rate?

Answer: Q ¼ �0.17 eV

3. The wear-rate for an automobile tire is found to occur 50% faster during the
summer months (35 �C) than during the winter months than during the winter
(15 �C). What is the effective activation energy Q for this wear-rate increase
during the summer months?
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Answer: Q ¼ 0.16 eV

4. The creep rate for a metal was found to double when the temperature was
elevated from 500 to 525 �C. What is the effective activation energy Q?

Answer: Q ¼ 1.47 eV

5. The resistance degradation rate for a metal resistor, with current flowing,
quadruples when the temperature increases from 250 to 300 �C. What is the
effective activation energy Q?

Answers: Q ¼ 0.72 eV

6. The tires, on a certain trailer, were found to wear-out 89% faster when carrying a
weight of 3 W versus when the trailer was empty (weight of 1 W). Find the
effective power-law exponent n that describes the wear rate for the tires versus
the weight carried.

Answer: n ¼ 0.58

7. The creep rate for a metal was found to increase by 15 times when the tensile-
stress increased by a factor of 2. Find the effective power-law exponent n that
describes creep-rate dependence on tensile stress.

Answer: n ¼ 3.91

8. Paint on a house was found to degrade 4 times faster (on the south side of the
house which gets 3x more sun than does the west side of the house). Find the
effective power-law exponent n that describes the degradation rate with sun
exposure.

Answer: n ¼ 1.26

9. The operational frequency, of a semiconductor device, was found to degrade at a
rate 4 times faster when the operational voltage was increased 10%. Find the
effective power-law exponent n that describes the degradation rate versus
voltage.

Answer: n ¼ 14.5

10. The degradation rate, for the resistance of a conductor, increases by 4x when the
current is doubled. Find the effective power-law exponent n that describes the
degradation rate versus current density.

Answer: n ¼ 2.
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Chapter 10
Acceleration Factor Modeling

In reliability physics and engineering, the development and use of the acceleration
factor (AF) is fundamentally important to the theory of accelerated testing. The AF
permits one to take time-to-failure (TF) data very rapidly under accelerated stress
conditions, and then to be able to extrapolate the accelerated TF results (into the
future) for a given set of operational conditions.1 Since experimental determination
of the AF could actually take many years, the AF must be modeled using the TF
models introduced in Chap. 5. Since the AF must be modeled, it brings up another
important question—how does one build some conservatism into the models without
being too conservative?

1 Acceleration Factor

The AF is defined as the ratio of the expected TF under normal operating conditions
to the TF under some set of accelerated stress conditions,

AF ¼ TFð Þoperation
TFð Þstress

: ð10:1Þ

Since the TF under normal operation may take many years to occur, then
experimental determination of the AF (from stress conditions to normal operating
conditions) is usually impractical. However, if one has proper TF models (developed
under accelerated conditions) then one can use these TF-models to model the AF.

Two important TF models were presented in Chap. 5, the power-law and expo-
nential models, and are reproduced here:

1Note: for the reliability engineer, this is very exciting because the acceleration factor permits one to
effectively take a crystal-ball look into the future as to what will happen!.
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Power-Law TF Model

TF ¼ Ao ξð Þ�nexp
Q

KBT

� �
, ð10:2aÞ

and

Exponential TF Model

TF ¼ Boexp �γ � ξð Þexp Q

KBT

� �
: ð10:2bÞ

In the above TF equations, the prefactor coefficients (Ao, Bo) will vary from
device-to-device because these parameters are strongly fabrication/process depen-
dent.2 This is the reason why the TF will actually be a distribution of times-to-failure.
The Weibull and lognormal TF distributions were discussed in Chap. 7.

Using the TF models (Eq. 10.2a) along with Eq. (10.1), one obtains for the power-
law AF,

AF ¼ ξstress
ξop

� �n

� exp Q

KB

1
Top

� 1
Tstress

� �� �
: ð10:3aÞ

Likewise, for the exponential model one obtains:

AF ¼ exp γ ξstress � ξop
� �� 	 � exp Q

KB

1
Top

� 1
T stress

� �� �
: ð10:3bÞ

It is very important to note that the AF is very special, in that the AF is
independent of the materials/process-dependent coefficients (Ao, Bo). This means
that even though the TF must be expressed as a distribution of times-to-failure
(because of device-to-device variation), the AF is unique. AF depends only on the
physics-of-failure kinetics (n, γ, Q) and not on device-to-device variation (Ao, Bo).

As discussed in Chap. 5, the kinetic values (n, γ, Q) are determined through
accelerated testing and are given by the equations:

n ¼ � ∂ ln TF
∂ ln ξ

� �
T

, ð10:4aÞ

2Time-to-failure for materials/devices is strongly process dependent. Small micro-structural differ-
ences in the material can lead to device-to-device variations producing different times-to-failure.
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γ ¼ � ∂ ln TF
∂ξ

� �
T

, ð10:4bÞ

and

Q ¼ KB
∂ ln TF
∂ l=Tð Þ

� �
ξ

: ð10:4cÞ

Given the kinetic values (n, γ, Q) from accelerated data,3 one can then easily
model the AF without having to wait the many years which would otherwise be
required to actually measure the AF.

It cannot be emphasized too strongly: it is extremely important that the device-
dependent/materials-dependent/process-dependent prefactors, Ao and Bo, which
appear so prominently in the TF equations, do not appear in the equations for the
AF. This means that the AF depends only on the physics-of-failure (kinetics) and not
on device-to-device variation.4 Thus, for a single failure mechanism, all parts of the
TF distribution should be accelerated by the same amount.

The modeled AF, Eq. (10.3a) and (10.3b), permits one to go from a TF distribu-
tion taken under accelerated test conditions to a projected TF distribution under
normal operating conditions. The transformations from stress conditions to operating
conditions, for the lognormal and Weibull distributions, are given by:

Lognormal

t50ð Þop ¼ AF � t50ð Þstress ð10:5Þ

and

σð Þop ¼ σð Þstress ð10:6Þ

Weibull

t63ð Þop ¼ AF � t63ð Þstress ð10:7Þ

and

3Kinetic values are given in Chaps. 12 and 13 for various failure mechanisms. Also, kinetic values
(n, γ, Q) for various failure mechanisms can be found in reference materials, e.g., the IEEE
International Reliability Physics Symposium Proceedings.
4The fact that the AF depends only on the kinetics of failure (n, γ, Q) and not on device-to-device
variation (due to slight materials/process differences) is very important. This means that, for a single
failure mechanism, all devices of the time-to-failure distribution should be accelerated by the same
amount.
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βð Þop ¼ βð Þstresss ð10:8Þ

Note that while the characteristic TF for each distribution has been transformed
using the AF, it has been assumed that the dispersion parameter (σ, β) for each
distribution does not change with stress. The requirement that the dispersion param-
eter does not change with stress will serve as the definition for uniform acceleration:
uniform acceleration tends to accelerate the entire TF distribution uniformly such
that the dispersion/slope-parameters (σ, β) for the distributions do not change with
the level of stress. One should always take enough accelerated data to establish the
set of stress conditions under which the acceleration is uniform. A change in slope of
the TF distribution, with stress level, may indicate a change in physics could be
occurring.5 The goal of accelerated testing is to accelerate the physics without
changing the physics-of-failure!

Accelerated testing is fundamental to integrated circuit reliability improvements
because: (1) the defects (materials with low breakdown strengths) in a population of
otherwise good devices can be eliminated with a short duration accelerated stress
(burn-in); (2) the intrinsic failures can be accelerated with stress/ temperature (on a
sampling basis) so that the intrinsic failure rate for a population of good devices can
be determined; and, (3) the time for Wear-out (TF for the main distribution of
devices) can be projected from stress conditions to a specified set of operating
conditions.

2 Power-Law Versus Exponential Acceleration

It is prudent to ask the question: for the same set of TF data which can be fitted nearly
equally well by either the power-law or the exponential TF model, which model
gives a more conservative (smaller) TF value? Also, which model gives a more
conservative (smaller) AF? Generally, unless one is aware of some over-riding
physics to support one model over the other, then it may be advisable to use the
model with the more conservative AF. Example Problem 1 will be used to illustrate
that when the same TF data set is used, the exponential model (versus the power-law
model) produces a smaller TF and a smaller AF when the data is extrapolated from
stress conditions to use conditions. For this reason, the exponential model is usually
referred to as a more conservative model. This can be very important when one is
unsure which model is more valid.

5An example of the physics-of-failure changing can be easily found from electromigration-induced
failure in aluminum metallizations (discussed in Chap. 12). At relatively low temperatures, the
Al-ion transport is dominated by grain-boundary diffusion with activation energy Qgb. At much
higher temperatures, the transport is dominated by bulk (within-grain or lattice) diffusion with
activation energy Qbulk, where: Qbulk > Qgb.
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Example Problem 1
During constant temperature accelerated testing, TF data were collected and
the data are shown in Fig. 10.1. The units of the stress are in arbitrary units
(a.u.). The TF data could be fit rather nicely by a power-law model ξ�n (with
an exponent of n ¼ 4) or with an exponential model exp(�γξ) (with γ ¼
0.0475 in units reciprocal stress). However, one can see that the extrapolated
TF results from stress conditions (ξ ¼ 100 a.u.) to use conditions (ξ ¼ 10 a.u.)
are quite different for the two models. The exponential model predicts a much
shorter TF for use conditions (ξ ¼ 10 a.u.).

Determine:

(a) Using the power-law model, what is the AF for a stress condition of
ξstress¼ 100 a.u. to a use condition of ξuse ¼ 10 a.u.

(b) Using the exponential model, what is the AF for a stress condition of ξstress
¼ 100 a.u. to a use condition of ξuse ¼ 10 a.u.

(c) Which is the more conservative model, the exponential ξ-model or the
power-law model?

Solution

(a) Power-Law Model:

AF ¼ ξstress
ξop

� �n

¼ 100
10

� �4

¼ 10, 000:

(continued)
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Fig. 10.1 Accelerated TF data is shown fitted using both a power-law model and an exponential
model. Either model can fit the accelerated data quite well, but the two models give quite different
predictions as to the TF when the results are extrapolated to much lower values of the stress. The TF
and stress ξ are in arbitrary units (a.u.)
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(b) Exponential Model

AF ¼ exp γ ξstress � ξop
� �� 	 ¼ exp 0:0475ð Þ 100� 10ð Þ½ � ¼ 71:9:

(c) For the same TF data set, the exponential model is more conservative than
the power-law model. By conservative, one means that the exponential
model produces a smaller TF and a smaller AF when we extrapolate from
accelerated conditions to use conditions.

3 Cautions Associated with Accelerated Testing

There are at least two very important cautions associated with accelerated testing.
First, the acceleration should only accelerate the failure physics—it should not
change the failure physics. A simple story will perhaps serve as a reminder of this
important caution. If one goes to a local farm and gathers some fresh fertilized
chicken eggs, places them in an oven at 40 �C and waits approximately 21 days, then
one will likely obtain some very lively baby chicks. A highly accelerated testing
approach would be to place the eggs in boiling water (100 �C) and wait for only
7 min. However, this particular accelerated approach produces hard-boiled eggs—
not the intended lively chicks. It is painfully obvious that we did more than simply
accelerate the physics, the acceleration was too great and we changed the physics!

Second, the acceleration must be uniform—the acceleration must accelerate all
parts of the Weibull (or lognormal) distribution the same. In Fig. 10.2, an example of
uniform acceleration is shown. In Fig. 10.3, an example of nonuniform acceleration
is shown (Weibull slopes are very different).

Note that for non-uniform acceleration, as illustrated in Fig. 10.3, there is no
unique AF for the testing because the Weibull slopes β are very different.

4 Conservative Acceleration Factors

Often, one is required to construct/model an AF which is well outside the region
where actual stress data is available. Under these conditions, one might want to use a
more conservative approach to AF construction. In this more conservative AF
modeling approach, one can use the experimentally determined kinetics (n, Q)
over the region where stress data is actually available, and then use more conserva-
tive kinetics (nc, Qc) outside the region where data are not available.
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For a power-law TF model, the conservative AF becomes:

AF ¼ ξstress
ξc

� �n

� ξc
ξop

� �nc

�exp Q

KB

1
Tc

� 1
T stress

� �� �
� exp QC

KB

1
Top

� 1
Tc

� �� �
:

ð10:9Þ

In the equation above, (ξc, Tc) are the conservative limits on the stress and
temperature. For values above (nc, Tc), data are available showing that the kinetics
(n, Q) are valid. Below (ξc, Tc), where little/no data are available, it may be advisable
to use more conservative values for the kinetics (nc, Qc). Generally, the more
conservative values are: nc < n and Qc < Q.
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Fig. 10.2 Example is shown of uniform acceleration. Note that the Weibull slopes β are the same
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Fig. 10.3 Example is shown of non-uniform acceleration. Note that the Weibull slopes β are
significantly different
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Also, one can easily develop a similar conservative AF for the exponential TF
model:

AF ¼ exp γ ξstress � ξcð Þ½ � � exp γc ξc � ξop
� �� 	

�exp Q

KB

1
Tc

� 1
T stress

� �� �
� exp QC

KB

1
Top

� 1
Tc

� �� �
:

ð10:10Þ

Generally, the more conservative values are: γc < γ and Qc < Q.
The reason that a conservative value for the AF is sometimes used—a customer

never gets mad if the device lasts longer than you predict! However, a TF prediction
that is too conservative generally results in over-design or performance limitations,
both of which impact the cost/sale of the designed device.

Example Problem 2
In a constant temperature accelerated test, accelerated TF data was taken under
highly accelerated conditions where the accelerated stress conditions ranged
from ξ¼ 1,000 to 100 arbitrary units (a.u.). A power-law fit with n¼ 2 served
to describe very well the TF data over this accelerated stress range.

Determine the AF over the entire stress range from ξ ¼ 1,000 to 10 a.u.:

(a) when using no conservatism and
(b) when using conservatism.

Solution

(a) Using no conservatism means that one would assume a power-law depen-
dence n ¼ 2 (observed during accelerated testing over the stress range of
1,000 to 100 a.u.) and assume that the power-law exponent n¼ 2 continues
to hold from 100 to 10 a.u. (clearly outside the range were one has
accelerated data). Under these assumptions, Eq. (10.3a) gives:

AF ¼ ξstress
ξop

� �n

¼ 1000
10

� �2

¼ 10, 000:

(b) A more conservative approach would be to assume that n ¼ 2 holds over
the accelerated data range (1,000 to 100 a.u.) and then perhaps assume
something more conservative (e.g., n ¼ 1) from 100 to 10 a.u. (which is
outside the range where one actually has accelerated data). Equation (10.9)
gives:

AF ¼ ξstress
ξc

� �n

� ξc
ξop

� �nc

¼ 1,000
100

� �2

� 100
10

� �1

¼ 1, 000:
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Problems

1. During accelerated electromigration (EM) TF testing of an aluminum-alloy at
current density of J ¼ 2�9 106 A/cm2 and a temperature of 150 �C, a lognormal
distribution was obtained with the parameters: t50 ¼ 400 h and a σ ¼ 0.5.
Assuming a current density power-law exponent of n ¼ 2 and an activation
energy of Q ¼ 0.75 eV (and negligible Joule/self-heating):

(a) What is the AF from stress conditions to use conditions (Juse ¼ 0.5� 106

A/cm2, Tuse ¼ 105 �C)?
(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 185, (b) TF(1 %) ¼ 2.6 years

2. During accelerated creep TF testing of a metal-alloy at tensile stress level of σ ¼
800MPa and a temperature of 800 �C, a lognormal distribution was obtained with
the parameters: t50¼ 250 h and a σ¼ 0.8. Assuming a creep power-law exponent
of n ¼ 4 and activation energy of Q ¼ 1.3 eV:

(a) What is the AF from stress conditions to use conditions (σuse¼ 500 MPa, Tuse
¼ 500 �C)?

(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 1,532, (b) TF (1 %) ¼ 6.8 years

3. During accelerated fatigue cycle-to-failure testing of a metal-alloy with a stress
range of Δσ ¼ 400 MPa and a temperature of 25�C, a lognormal distribution was
obtained with the parameters: (CTF)50 ¼ 2,500 cycles and a σ¼ 0.7. Assuming a
fatigue power-law exponent of n ¼ 4:

(a) What is the AF from stress conditions to use conditions (Δσuse ¼ 200MPa,
Tuse ¼ 25 �C)?

(b) What is the expected cycles-to-failure for 1 % of the devices during use
conditions?

Answers: (a) AF ¼ 16 (b) TF(1 %) ¼ 7,829 cycles

4. During accelerated time-dependent dielectric breakdown (TDDB) testing of a
silica-based dielectric, at an electric field of E ¼ 10 MV/cm and a temperature of
105 �C, a Weibull distribution was obtained with the parameters: t63¼ 1.5 h and a
β ¼ 1.4. Assuming an exponential model with a field acceleration of γ ¼ 4.0
cm/MV:

(a) What is the AF from stress conditions to use conditions (Euse ¼ 5 MV/ cm,
Tuse ¼ 105 �C?

(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 4.850 � 108 (b) TF ¼ 3,107 years
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5. During accelerated corrosion TF testing at 90 % relative humidity (RH) and
temperature of 121 �C, a lognormal distribution was obtained with the parame-
ters: t50 ¼ 1,500 h and a σ ¼ 0.7. Assuming an exponential TF model with a
humidity acceleration parameter of γ¼ [0.12]/%RH and activation energy of 0.75
eV:

(a) What is the AF from stress conditions to use conditions (%RH)use ¼ 65 %,
Tuse ¼ 85 �C)?

(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 185 (b) TF ¼ 6.2 years

6. During mobile-ions TF testing of MOSFET isolation devices at 7.5 V and 150 �C,
a Weibull distribution was obtained with the parameters: t63 ¼ 1,200 h and a β ¼
1.6. Assuming a power-law TF model with n¼ 1 and activation energy of 1.0 eV:

(a) What is the AF from stress conditions to use conditions (Vuse ¼ 5.0 V, Tuse ¼
85 �C)?

(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 218, (b) TF(1 %) ¼ 1.7 years

7. For the accelerated EM data given in Problem 1, perform a more conservative TF
analysis by using n ¼ 2 from J ¼ 2.0 � 106 to 1.0 � 106 A/cm2 and n ¼ 1.5
below 1.0 � 106 A/cm2.

(a) What is the AF from stress conditions to use conditions (Juse ¼ 0.5 � 106

A/cm2, Tuse ¼ 105 �C)?
(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 131, (b) TF(1 %) ¼ 1.9 years

8. For the accelerated creep data given in Problem 2, perform a more conservative
TF analysis by using n ¼ 4 from σ ¼ 800 to 600 MPa and n ¼ 3 below 600 MPa

(a) What is the AF from stress conditions to use conditions (σ ¼ 500 MPa,
Tuse ¼ 500 �C)?

(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 1,279, (b) TF(1 %) ¼ 5.7 years

9. For the accelerated fatigue data given in Problem 3, perform a more conservative
TF analysis by using n ¼ 4 from Δσ ¼ 400 to 300 MPa and n ¼ 3 below Δσ ¼
300 MPa.

(a) What is the AF from stress conditions to use conditions (Δσ ¼ 200 MPa, Tuse
¼ 25 �C)?

(b) What is the expected cycles-to-failure for 1 % of the devices during use
conditions?

Answers: (a) AF ¼ 10.7, (b) TF(1 %) ¼ 5,226 cycles
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10. For the accelerated TDDB data given in Problem 4, perform a more conservative
TF analysis by using γ ¼ 4 cm/MV from E ¼ 10 to 7 MV/cm and γ ¼ 3.5
cm/MV below 7 MV/cm.

(a) What is the AF from stress conditions to use conditions (Euse ¼ 5 MV/ cm,
Tuse ¼ 105 �C)?

(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 1.79 � 108, (b) TF(1 %) ¼ 1,142 years

11. For the accelerated corrosion data given in Problem 5, perform a more conser-
vative TF analysis by using γ ¼ [0.12]/%RH from 90 to 80 %RH and γ ¼ [0.1]/
%RH below 80 %RH.

(a) What is the AF from stress conditions to use conditions (%RH)use ¼ 65 %,
Tuse ¼ 85 �C?

(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 137, (b) TF ¼ 4.6 years

12. For the mobile-ions TF data given in Problem 6, perform a more conservative
TF analysis by using Q ¼ 1.0 eV from T ¼ 150 to 100 �C and Q ¼ 0.75 eV
below 100 �C.

(a) What is the AF from stress conditions to use conditions (Vuse ¼ 5.0 V,
Tuse ¼ 85 �C)?

(b) What is the expected TF for 1 % of the devices during use conditions?

Answers: (a) AF ¼ 158, (b) TF ¼ 1.22 years
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Chapter 11
Ramp-to-Failure Testing

Engineers are constantly confronted with time issues. Applying a constant stress and
waiting for failure can be very time-consuming. Thus, it is only natural to ask the
question—does a rapid time-zero test exist that can be used on a routine sampling
basis to monitor the reliability of the materials/devices? The answer to this question
is often yes and it is called the ramp-to-failure test. While the test is destructive in
nature (one has to sacrifice materials/devices), it is generally much more rapid than
conventional constant-stress time-to-failure tests. The relative quickness of the test
also enables the gathering of more data and thus the gathering of better statistics.

1 Ramp-to-Failure Testing

Let us suppose that rather than applying a constant stress ξ and waiting for failure,
we induce failure simply by ramping up the stress level ξ(t) with time until the device
fails. During the ramp testing, one carefully records the level of stress at failure/
breakdown ξbd and the total time from start of stress to breakdown tbd. An example of
linear ramp-to-failure/breakdown test is shown in Fig. 11.1.

From this ramp-to-breakdown test, it can be easily seen that tbd is not the length of
time that the material actually experiences the stress level of ξbd. The time tbd is the
total observation time, and as such, comprehends the time that the material/ device
spent at the lower stress levels of the ramp as well as at time spent at ξbd. Therefore,
the effective time teff actually spent at the breakdown strength ξbd will be lower than
tbd. One can use the acceleration factor to equate a differential element of effective
stress time dteff with a differential element of observed time dt:

dteff ¼ Fξ tð Þ,ξbddt: ð11:1Þ
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Integrating both sides of the above equation to determine the effective time spent
at ξbd for the entire ramp-to-breakdown test, one obtains:

teff ¼
Ztbd
0

AFξ tð Þ,ξbddt: ð11:2Þ

2 Linear Ramp Rate

Let us determine the effective time teff spent at ξbd during the linear ramp of ξ(t), as
illustrated in Fig. 11.1, where:

ξ tð Þ ¼ Rt: ð11:3Þ

Ramping the stress with a constant ramp rate R(¼dξ/dt) means that tbd ¼ ξbd/R.

2.1 Linear Ramp with Exponential Acceleration

Let us suppose that the acceleration factor in Eq. (11.2) is in the form of an
exponential acceleration factor. From Chap. 10, one obtains:

AFξ tð Þ,ξbd ¼ exp γ ξ tð Þ � ξbd½ �f g: ð11:4Þ

S
tr

es
s:

 ξ
(t

) ξbd

tbd

Linear Ramp Rate:
ξ(t) = Rt

Time: t

Fig. 11.1 Stress ξ(t) is
ramped with time in a linear
manner until the material/
device fails. The level of
stress at failure/ breakdown
is recorded to be ξbd. The
total time of the ramp to
breakdown is tbd. R(¼ dξ/dt)
is a constant ramp rate
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Equation (11.2) now becomes:

teff ¼
Zξbd=R
0

exp γ Rt � ξbdð Þ½ �dt

¼ exp �γξbd½ �
Zξbd=R
0

exp γRt½ �dt

¼ exp �γξbd½ � 1
γR

� �
exp γξbdð Þ � 1½ �

¼ 1
γR

� �
1� exp �γξbdð Þ½ �:

ð11:5Þ

Therefore, for an exponential acceleration factor, the linear ramp produces an
effective time teff spent at the breakdown strength ξbd:

teff ¼ 1
γR

� �
1� exp �γξbdð Þ½ � ffi 1

γR
, ð11:6Þ

where it is assumed in Eq. (11.6) that γξbd is large enough that the exponential
term is much smaller than 1. The fact that one has an expression for the effective
time teff spent at the breakdown level ξbd is very important. Coupled with the
appropriate acceleration factor, teff permits us to extrapolate from a breakdown
value ξbd to a time-to-failure. The usefulness of teff is illustrated in the next
example problem.

Example Problem 1
To make sure that capacitors will last an expected lifetime (10 years at
105 �C), capacitors were randomly selected and then ramp-to-failure tested
using a ramp rate of R ¼ dE/dt ¼ l MV/cm/s at 105 �C. During ramp
testing, it was determined that the weakest device had a breakdown strength
of Ebd ¼ 10.5 MV/cm. Assuming an exponential acceleration factor with
γ ¼ 4.0 cm/MV, determine the expected time-to-failure at an operational
field of 5 MV/cm.

Solution
Since γEbd is large, then exp[–γEbd] � 1 and the effective time-to-failure at
Ebd is given by:

(continued)
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teff ffi 1
γR

¼ 1
4:0cm=MVð Þ 1MV=cm=sð Þ ¼ 0:25s:

Therefore, if the capacitors last 0.25 s at Ebd ¼ 10.5 MV/cm (and at
105 �C), then at a constant stress of E ¼ 5.0 MV/cm (and at 105 �C) they
would be expected to last:

TFE¼5MV=cm ¼ AFEbd¼10:5MV=cm,E¼5MV=cm � 0:25sð Þ
¼ exp 4:0cm=MVð Þ 10:5� 5ð ÞMV=cm½ � � 0:25sð Þ

¼ 8:96� 108s
1h

3, 600s

� �
1year
8, 760h

� �
¼ 28years

Therefore, based on the sampling results using the linear-ramp breakdown
test, the capacitors should safely meet the 10-year lifetime requirement.

2.2 Linear Ramp with Power-Law Acceleration

Let us suppose that the acceleration factor in Eq. (11.2) is in the form of a power-law
acceleration factor:

AFξ tð Þ,ξbd ¼
0 forξ tð Þ 	 ξyie1d

� �
ξ tð Þ � ξyie1d
ξbd � ξyie1d

� �n
forξ tð Þ 
 ξyie1d
� �

8<
:

9=
;: ð11:7Þ

For reasons which will be established in Chap. 13, where mechanical stress is
discussed in detail, an additional term has been inserted in Eq. (11.7) called the yield
stress ξyield. Below ξyield, the stress ξ(t) is expected to produce no damage to the
material/device and thus the acceleration factor, as expressed by Eq. (11.7), is
assumed equal to zero when the stress ξ(t) is below ξyield.

1 Since a given material
may or may not have a yield stress, then one must always question its existence.
Using Eq. (11.7), Eq. (11.2) now becomes:

1One should always question the existence of a yield stress ξyield. Some materials have a yield stress,
some do not. Even if a material has a reported yield point, a slight crack/defect existing in the
material may have an adverse impact on the yield point. The stress riser at the crack-tip/defect may
produce a local stress in the material well above the yield stress. Degradation would now be
expected even though the average stress may be below ξyield.

152 11 Ramp-to-Failure Testing



teff ¼
Zξbd=R
0

AFξ tð Þ,ξbddt

¼ R ξbd=R
ξyield=R

ξ tð Þ�ξyield
ξbd�ξyield

h in
dt

¼ 1
ξbd�ξyieldð Þ

� �n Zξbd=R
ξyield=R

Rt � ξyield
� �n

dt

¼ 1
ξbd�ξyield

h in ξbd � ξyie1d
� 	nþ1

R nþ 1ð Þ

" #

¼ 1
nþ 1

ξbd � ξyield
R

� �
:

ð11:8Þ

Therefore, for a power-law acceleration factor, the linear-ramp test produces an
effective time teff at the breakdown strength ξbd of:

teff ¼ 1
nþ 1

ξbd � ξyield
R

� �
: ð11:9Þ

Example Problem 2
During the inspection of turbine blades, it was noted that small cracks existed
at the base of the turbine blades. A potential reliability issue can develop if the
cracks propagate during use and produce failure under the normal tensile-
stress conditions of rotation. A random selection of these turbine blades was
tested using a linear ramp-to-failure test. The linear ramp rate used for the
tensile stress was R ¼ dσ/dt ¼ 10 MPa/min and the testing was done at the
expected use temperature of 850 �C. The weakest turbine blade found during
the ramp testing was σrupture ¼ 200 MPa. Assuming that the use-condition
tensile stress is 10 MPa, find the expected time-to-failure. Assume that a
power-law model is appropriate with a stress dependence exponent of n ¼
4 and, because of stress risers (discussed in Chap. 13) at the crack tips, σyield is
negligibly small.

Solution
For the weakest turbine blade (σrupture ¼ 200 MPa) found during the linear
ramp stress testing, the time-to-failure under this ramp testing was:

TF@200MPa ¼ 1
nþ 1

ξbd
R

� �
¼ 1

4þ 1
200MPa

10MPa=min

� �
¼ 4min:

(continued)
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The expected time-to-failure at the use condition of 10 MPa would be:

TF@σ¼10MPa ¼ AFσ-rupture¼200MPa,σ¼10MPa � 4minð Þ

¼ 200MPa
10MPa

� �4
4minð Þ

¼ 6:40� 105min

¼ 6:40� 105min
1h

60min

� �
1year
8, 760h

� �
¼ 1:2years:

3 Breakdown/Rupture Distributions

The breakdowns/ruptures that are determined using the ramp-to-breakdown method
may not be described well by the normal distribution (which is a symmetrical
distribution). This occurs because the breakdowns/ruptures at the high end of the
distribution are generally relatively tightly grouped. This is because the breakdowns/
ruptures are limited, on the high end of the distribution, by the fundamental strength
of the material. However, at the lower end of the distribution, the breakdowns/
ruptures are generally more widely spread due to defects existing in the materials.
For this reason, the Weibull distribution is often used to describe the inherent
non-symmetrical breakdown/rupture data. This is illustrated in Fig. 11.2.

The Weibull probability density function f(ξbd) for the breakdown/rupture values
is given by:

f ξbdð Þ ¼ β

ξbdð Þ63

� �
ξbd
ξbdð Þ63

� �β�1

exp � ξbd
ξbdð Þ63

� �β
" #

, ð11:10Þ

Breakdown/Rupture Value: x (Arbitrary Units)

0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25

W
ei

b
u

ll:
 f

(x
)

β = 10

β = 4

β = 2

Fig. 11.2 The breakdown/rupture values, obtained from ramped-to-breakdown testing, can often
be described by a Weibull distribution. Note that the Weibull distribution can be nonsymmetrical,
favoring the lower breakdown values. This tends to more accurately reflect actual breakdown/
rupture data. The actual shape is a sensitive function of the Weibull slope β
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where (ξbd)63 is the characteristic Weibull value and β is the Weibull slope, with the
method for determination given in Chap. 7. The cumulative Weibull probability
function is given by:

F ξbdð Þ ¼
Zξbd
0

f ξbdð Þdξbd ¼ 1� exp � ξbd
ξbdð Þ63

� �β
" #

: ð11:11Þ

Example Problem 3
During ramp-to-rupture testing of metal rods, the following rupture values
were obtained:

637 MPa 573 MPa 712 MPa 614 Mpa 552 Mpa

527 MPa 593 Mpa 666 Mpa 497 Mpa 453 Mpa

(a) Find the Weibull parameters that give the best fitting to the rupture data.
(b) Plot the Weibull probability density function.

Solution

(a) The Weibull best fitting parameters are given by:

The Weibull parameters that produce the best fitting to the rupture data
are: (Rupture)63 ¼ 616 MPa and β ¼ 8.1.

(b) The Weibull probability density function is shown below. Note that the
distribution is asymmetrical and tends to favor the lower part of the rupture
distribution. The lower value ruptures tend to occur more frequently
because of defects in the materials.

(continued)
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4 Cautions for Ramp-to-Failure Testing

One should note that the ramp-to-failure testing method can potentially be very
fast. However, always remember the story of the lively chicks versus the hard-
boiled eggs in Sect. 4 in Chap. 10. One should confirm that the linear ramp test is
only accelerating the physics of failure, not changing the physics of failure. To help
insure that you are accelerating the right activation energy mechanism, always try
to do the ramp test at the expected material/device operating temperature Top. Also,
make the ramp rate as slow2 as test time will permit. One should always take some
constant-stress time-to-failure data, just to confirm that the time-to-failure pro-
jections from the ramp stress test are correct. Finally, some stresses, such as a
current density stress in a conductor, can produce severe Joule/self-heating as the
current–density stress is ramped. Thus, in a ramp test using current density, one
might be investigating fusing physics as opposed to the intended electromigration
physics. However, many of the stresses of interest (mechanical stress, electric-field
stress, electrochemical stress, etc.) may not produce significant self-heating. As you
build your confidence in the ramp-to-failure test method (assuming that the results
from the ramp test closely match those of a constant-stress time-to-failure test),
then the majority of your future testing may be the ramp-to-failure method of
testing.

2Generally, the slower the ramp rate, the closer the ramp test results will match actual constant-
stress time-to-failure results.
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5 Transforming Breakdown/Rupture Distributions into
Constant-Stress Time-to-Failure Distributions

Shown in Fig. 11.3 is the breakdown/rupture ξbd distribution that was obtained from
a linear ramp-to-failure test. The question is, how does one transform these break-
down/rupture values into an expected constant-stress ξop time-to-failure
distribution?

The time-to-failure for a cumulative fraction F of the breakdown strengths is
given by:

TF F%ð Þ ¼ AFξbd F%ð Þ,ξop � teff , ð11:12Þ

where teff is the effective time-to-failure at ξbd during the ramp testing.

5.1 Transforming Breakdown/Rupture Distribution to Time-
to-Failure Distribution Using Exponential Acceleration

One would like to find the transformation equation for converting a breakdown/
rupture distribution into a time-to-failure distribution when one has exponential
acceleration. Using Eqs. (11.6) and (11.12) with the exponential acceleration factor,

AFξbd F%ð Þ,ξop ¼ exp γ ξbd F%ð Þ � ξop
� �
 � ð11:13Þ

gives:

TF F%ð Þ ¼ 1
γR

� �
exp γ ξbd F%ð Þ � ξop

� �
 �
: ð11:14Þ

In Eq. (11.14), γ is the exponential acceleration parameter, R(¼dξ/dt) is the linear
ramp rate, F% is the percentage of devices that have a breakdown/rupture strength	
ξbd(F %), and ξop is the expected constant-stress operational value.

Stress: ξ
ξbd(F%) 

ξop

f(ξbd) 

Fig. 11.3 Distribution f
(ξbd) of breakdown/rupture
strengths as determined
from a linear ramp-to-failure
test. ξbd(F%) represents the
breakdown strength for a
cumulative fraction F of the
devices. ξop represents the
expected constant-stress
operational value
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5.2 Transforming Breakdown/Rupture Distribution to Time-
to-Failure Distribution Using Power-Law Acceleration

One would like to find the transformation equation for converting a breakdown/
rupture distribution into a time-to-failure distribution when one has power-law
acceleration. Using Eqs. (11.9) and (11.12), with the power-law acceleration factor,

AFξbdðF%Þ,ξop ¼
ξbd F%ð Þ � ξyield

ξop � ξyie1d

� �n
, ð11:15Þ

gives:

TF F%ð Þ ¼ 1
nþ 1

ξop � ξyield
R

� �
ξbd F%ð Þ � ξyield

ξop � ξyie1d

� �nþ1

: ð11:16Þ

In Eq. (11.16), n is the power-law exponent for the acceleration, R(¼dξ/dt) is the
linear ramp rate, F% is the percentage of devices that have a breakdown/rupture
strength 	 ξbd(F%), and ξop is the expected constant-stress operational value. If the
material exhibits a yield stress, ξyield, it is also included in Eq. (11.16).

6 Constant-Stress Lognormal Time-to-Failure
Distributions from Ramp Breakdown/Rupture Data

As discussed in Chap. 7, the lognormal time-to-failure distribution is fully defined
when the characteristic parameters (t50, r) are determined.

6.1 Exponential Acceleration

Given that the time-to-failure for exponential acceleration can be expressed by

TF F%ð Þ ¼ 1
γR

� �
exp γ ξbd F%ð Þ � ξop

� �
 �
, ð11:17Þ

the characteristic parameters for the lognormal distribution are given by:

TF 50%ð Þ ¼ 1
γR

� �
exp γ ξbd 50%ð Þ � ξop

� �
 � ð11:18Þ
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and

σlog normal ¼ ln
TF 50%ð Þ
TF 16%ð Þ

� �
¼ γ ξbd 50%ð Þ � ξbd 16%ð Þ½ �: ð11:19Þ

Example Problem 4
Assuming exponential acceleration with acceleration parameter γ, show that if
the breakdown/rupture strengths are normally distributed then the expected
time-to-failure results will be lognormally distributed.

Solution
From Eq. (11.19) one obtains:

σlog normal ¼ ln
TF 50%ð Þ
TF 16%ð Þ

� �
¼ γ ξbd 50%ð Þ � ξbd 16%ð Þ½ �

¼ γσnormal:

Therefore, assuming exponential acceleration with acceleration parameter
γ, if the breakdown strengths are normally distributed with standard deviation
of σnormal, the time-to-failure will be lognormally distributed with logarithmic
standard deviation σlognormal ¼ γσnormal.

6.2 Power-Law Acceleration

Given that the time-to-failure for power-law acceleration is given by

TF F%ð Þ ¼ 1
nþ 1

ξop � ξyield
R

� �
ξbd F%ð Þ � ξyield

ξop � ξyie1d

� �nþ1

, ð11:20Þ

the characteristic parameters for the lognormal distribution are given by:

TF 50%ð Þ ¼ 1
nþ 1

ξop � ξyield
R

� �
ξbd 50%ð Þ � ξyield

ξop � ξyie1d

� �nþ1

ð11:21Þ

σ ¼ ln
TF 50%ð Þ
TF 16%ð Þ

� �
¼ nþ 1ð Þ ln ξbd 50%ð Þ � ξyie1d

ξbd 16%ð Þ � ξyie1d

� �
: ð11:22Þ
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7 Constant-Stress Weibull Time-to-Failure Distributions
from Ramp Breakdown/Rupture Data

As discussed in Chap. 7, the Weibull time-to-failure distribution is fully defined
when the characteristic parameters (t63, β) are determined.

7.1 Exponential Acceleration

Given that the time-to-failure for exponential acceleration is given by

TF F%ð Þ ¼ 1
γR

� �
exp γ ξbd F%ð Þ � ξop

� �
 �
, ð11:23Þ

the characteristic Weibull distribution parameters (t63, β) are given by:

TF 63%ð Þ ¼ 1
γR

� �
exp γ ξbd 63%ð Þ � ξop

� �
 �
, ð11:24Þ

and3

β ¼ ln � ln 1� Fð Þ½ �
γ ξbd F%ð Þ � ξbd 63%ð Þ½ � : ð11:25Þ

7.2 Power-Law Acceleration

Given that the time-to-failure for power-law acceleration is given by

TF F%ð Þ ¼ 1
nþ 1

ξop � ξyield
R

� �
ξbd F%ð Þ � ξyield

ξop � ξyie1d

� �nþ1

, ð11:26Þ

the characteristic parameters of the Weibull distribution are obtained by:

3Reminder—any cum fractionF can be used to determine β provided that the corresponding ξbd (F%)
is also used. If one chooses to use F ¼ 0.1, then β ¼ 2.25/{γ [ξbd(63 %) - ξbd(10 %)]}.
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TF 63%ð Þ ¼ 1
nþ 1

ξop � ξyield
R

� �
ξbd 63%ð Þ � ξyield

ξop � ξyie1d

� �nþ1

and4

β ¼ ln � ln 1� Fð Þ½ �
nþ 1ð Þ ln ξbd F%ð Þ � ξyie1d

ξ 63%ð Þ � ξyie1d

� � , ð11:28Þ

where n is the power-law exponent and R (¼ dξ/dt) is the constant ramp rate used to
determine the breakdown strength ξbd.

Example Problem 5
During the ramp-breakdown testing of capacitors (caps) at 105 �C with a ramp
rate of R¼ 1 MV/cm/s, it was determined that 10 % of the caps break down at
a field of 	 10.5 MV/cm and 63 % of the caps at 	11 MV/cm. If the devices
are operated at a constant stress of 5 MV/cm, what are the expected Weibull
time-to-failure distribution parameters t63 and β?

1. Assume an exponential acceleration, with γ ¼ 4 cm/MV.
2. Assume a power-law acceleration, with n ¼ 42 and ξyield ¼ 0

Solution

1. For exponential acceleration, at 105 �C, Eq. (11.23) gives:

TF 63%ð Þ ¼ 1
γR

� �
exp γ ξbd 63%ð Þ � ξop

� �
 �

¼ 1
4:0cm=MVð Þ 1MV=cm=sð Þ

� �
� exp 4:0cm=MVð Þ 11MV=cm� 5MV=cmð Þf g

¼ 6:62� 109s
1h

3, 600s

� �
1year
8, 760h

� �
¼ 210years:

The expected Weibull slope β from Eq. (11.25) is:

(continued)

4If one uses F ¼ 0.1 then β ¼ 2.25/{(n + 1)ln[ξbd(63%)/ξbd(10%)]}.
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β¼ ln � ln 1� Fð Þ½ �
γ ξbd F%ð Þ � ξbd 63%ð Þ½ �

¼ ln � ln 1� 0:1ð Þ½ �
4:0cm=MVð Þ 10MV=cm� 10:5MV=cm½ �

¼ 1:13:

2. For power-law acceleration at 105 �C and no yield point, Eq. (11.26) gives:

TF 63%ð Þ ¼ 1
nþ 1

ξop
R

� �
ξbd 63%½ �

ξop

� �nþ1

¼ 1
43

5MV=cm
1MV=cm=s

� �
11MV=cm
5MV=cm

� �43

¼ 6:16� 1013s
1h

3, 600s

� �
1year
8, 760h

� �

¼ 1:95� 106 years:

The expected Weibull slope β is given by Eq. (11.28):

β¼ ln � ln 1� Fð Þ½ �
nþ 1ð Þ ln ξbd F%ð Þ

ξbd 63%ð Þ
� �

¼ ln � ln 1� 0:1ð Þ½ �
42þ 1ð Þ ln 10:5MV=cm

11MV=cm

� �
¼ 1:12:

Problems

1. Capacitor dielectrics were randomly selected and ramp-to-breakdown tested at
105 �C, using a linear ramp rate of R ¼ dE/dt ¼ 0.5 MV/cm/s. During ramp-to-
breakdown testing, it was determined that the breakdown distribution could be
approximated by a normal distribution with: (Ebd)50 ¼ 12 MV/cm and σ ¼ 1.0
MV/cm. Determine the expected time-to-failure for 1 % of the capacitors at an
operational field of 5 MV/cm at 105 �C. Assume an exponential acceleration
factor with γ ¼ 4.0 cm/MV.

Answer: TF(1 %) ¼ 2.1 years
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2. Turbine blades were randomly selected and ramped-to-rupture at 700 �C using a
tensile stress with a linear ramp rate of R¼ dσstress/dt¼ 5MPa/min. During ramp-
to-rupture testing, it was determined that the rupture distribution could be
approximated by a normal distribution with: (σrupture)50 ¼ 250 MPa with a
standard deviation of σ ¼ 25MPa. Determine the expected time-to-failure for
1 % of the turbine blades at an operational tensile stress of 15 MPa at 700 �C.
Assume a power-law acceleration factor with n ¼ 4.0 and (because of small
cracks) no yield point.

Answer: TF(1 %) ¼ 0.4 years

3. Analyze Problem 1 except this time, assume a power-law acceleration with
n ¼ 40.

Answer: TF(1 %) ¼ 4,297 years

4. Analyze Problem 2, except this time assume an exponential acceleration with
γ ¼ 0.06/MPa.

Answer: TF(1 %) ¼ 0.3 years

5. Steel pipes were randomly selected for pressurizing-to-rupture testing. Using a
linear ramp rate of R ¼ dP/dt ¼ 5 kpsi/min, the rupture data tended to obey a
Weibull distribution with (Prupture)63 ¼ 200 kpsi and a Weibull slope of β ¼ 10.
Determine the expected time-to-failure for 1 % of the pipes at an operational
pressure of 5 kpsi. Assume that the stress in the cylindrical pipes is directly
proportional to the pressure and assume a power-law acceleration factor with an
exponent of n ¼ 4 and (because of small cracks) no yield point.

Answer: TF(1 %) ¼ 3.9 years

6. Suspension cables were randomly selected for tensile stressing-to-rupture testing.
Using a linear ramp rate of R ¼ dσTensile/dt ¼ 4 kpsi/min, the rupture data tended
to obey a Weibull distribution with (σrupture)63 ¼ 250 kpsi and a Weibull slope of
β ¼ 12. Determine the expected time-to-failure for 1 % of the cables at an
operational pressure of 2 kpsi. Assume a power-law acceleration factor with an
exponent of n ¼ 4 and (because of small defects) no yield point.

Answer: TF(1 %) ¼ 854 years

7. With no yield point, Eq. (11.16) reduces to:

TF F%ð Þ ¼ 1
nþ 1

ξop
R

� �
ξbd F%ð Þ

ξop

� �nþ1

,

which is valid when the stress ξ is linearly ramped at a constant rate R (R ¼ dξ/dt
¼ constant) until failure occurs. Show that, if the stress is proportional to the
power-law of some other parameter S,
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ξ ¼ CoS
m,

then the time-to-failure equation becomes:

TF F%ð Þ ¼ 1
nþ 1

Sm
op

R1

� �
Sbd F%ð Þ

Sop

� �m nþ1ð Þ
,

where the ramp rate R1 is given by:

R1 ¼ mSm�1 dS
dt

� �
¼ constant:

8. Using the results from Problem 7, metal storm shutters with small cracks were
randomly selected for storm testing. The shutters were tested in a wind tunnel by
ramping the wind speed S until the shutters failed. The stress σ in the shutters, due
to the wind, is proportional to the square of the wind speed: σ ¼ C0S

2. Using a
constant ramp rate of R1 ¼ 2S(dS/dt) ¼ 10 (mph)2/min, the failure data tended to
obey a Weibull distribution with (S)63 ¼ 100 mph and a Weibull slope of β ¼ 10.
Determine the expected time-to-failure for 1 % of the shutters with a nominal
constant wind speed of 25 mph. Assume a power-law acceleration factor of at
least n ¼ 6, and because of the small cracks, no yield point.

Answer: TF(1 %) ¼ 7.2 years
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Chapter 12
Time-to-Failure Models for Selected Failure
Mechanisms in Integrated Circuits

Advanced integrated circuits (ICs) are very complex, both in terms of their design
and in their usage of many dissimilar materials (semiconductors, insulators, metals,
plastic molding compounds, etc.). For cost reductions per device and improved
performance, scaling of device geometries has played a critically important role in
the success of semiconductors. This scaling—where device geometries are generally
reduced by 0.7 � for each new technology node and tend to conform to Moore’s
Law1

—has caused the electric fields in the materials to rise (bringing the materials
ever closer to their breakdown strength) and current densities in the metallization to
rise causing electromigration (EM) concerns. The higher electric fields can acceler-
ate reliability issues such as: time-dependent dielectric breakdown (TDDB),
hot-carrier injection (HCI), and bias temperature instability (BTI). In addition, the
use of dissimilar materials in a chip and in the assembly process produces a number
of thermal expansion mismatches which can drive large thermomechanical stresses.
These thermomechanical stresses can result in failure mechanisms such as stress
migration (SM), creep, fatigue, cracking, delaminating interfaces, etc.

1 Electromigration

EM has historically been a significant reliability concern for both Al-based and
Cu-based metallizations. As illustrated in Fig. 12.1, due to the momentum exchange
between the current carrying electrons and the host metal lattice, metal ions can drift

1Moore’s Law, attributed to Gordon Moore, states that the transistor density on ICs tends to double
every 18–24 months.
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under the influence of the electron wind. The force F exerted on a metal ion due to
the electron wind is directly proportional to the electron current density J(e),

F ¼ ρ0z
∗eJ eð Þ, ð12:1Þ

where ρ0 is the resistivity of the metal, and z*e is the effective metal-ion charge.
Eventually, due to a flux divergence2 (caused by gradients in microstructure,

temperature, stress, impurities, etc.), vacancies3 will start to cluster; the cluster can
grow into a void; and finally the void growth will continue until the conductor
reaches a resistive or open-circuit condition. This can be an important failure
mechanism for ICs where the current densities in the metal stripes/leads can easily
approach and even exceed a mega-amp per square centimeter (MA/cm2). Shown in
Fig. 12.2 is a metal conductor which was stressed at 2 MA/cm2 and at 150 �C for a
few 100 h. Note the severe EM-induced voiding which has occurred in this test line/
lead/stripe.

Fig. 12.1 For high-electron current densities J(e), the electron wind (collisions of the electrons with
the metal ions in the lattice) serves to exert a force F on the metal ion which is large enough to cause
the metal ionM+ to drift from the cathode toward the anode. Generally, this metal-ion movement is
along grain boundaries in Al-alloys and along interfaces with copper

Fig. 12.2 Electromigration-induced transport (and eventual flux divergence) has produced severe
voiding in the Al metal lead shown. The voiding will cause a resistance rise in the metal line/ stripe/
lead, eventually impacting device functionality. In the case shown here, the metal-ion flux is Jout >
Jin, thus voiding occurs

2Recall from Chap. 5 that a flux divergence represents the net flow of material into or out of a region
of interest. A flux divergence can result in the accumulation or depletion of metal ions in the region
of interest. Microstructure differences, such as grain size differences, can result in flux divergences.
3Vacancy is simply a vacant lattice site. A vacancy represents free space (a missing atom) and, as
such, a clustering of vacancies can result in void formation. A discussion of vacancies can be found
in Chap. 13.
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For Al-alloys, the metal-ion transport is primarily along grain boundaries (for
temperatures T < Tmelt/2).

4 Two idealized regular/uniform grain structures are
illustrated in Fig. 12.3.5 The transport of metal ions due to the electron wind, coupled
with a flux divergence due to a microstructure gradient, as illustrated in Fig. 12.3,
can cause either voiding or accumulations to occur. The void nucleation phase
generally has little/no impact on the electrical resistance rise in the metal stripe.
The void growth-phase, however, can cause local current crowding and a rise in
resistance for the metal stripe.

If the metallization is actually an Al-alloy/barrier-metal laminate, then the resis-
tance rise may show a time delay t0 and then a gradual rise as illustrated in Fig. 12.4.
This gradual rise in resistance, of course, assumes that the barrier metal is
electromigration resistant. Some commonly used electromigration-resistant barriers
in integrated circuit applications include: TiW, TiN, and TaN. Without a barrier layer

Fig. 12.3 Electromigration-induced transport is primarily along grain boundaries in polycrystalline
Al-alloy conductors. (a) Two regions of uniform grain structure are illustrated. (b) Electron flow J(e)

from left to right can serve to produce a void in the metal due to the flux divergence at the
microstructure gradient. (c) Electron flow from right to left can produce an accumulation of metal
due to the flux divergence at the microstructure gradient. The dominant electromigration-transport
mechanism for Cu can be along the Cu/barrier interfaces

4Grain boundary (or interface) transport generally dominates for T < 0.5 Tmelt, where Tmelt is the
melting temperature of the metal (expressed in Kelvin). Bulk (within grain or lattice) transport can
dominate for T > 0.5 Tmelt. The activation energy for grain-boundary transport Qgb is roughly half
that of bulk transport Qbulk.
5Grain sizes are not really as regular/uniform as illustrated in Fig. 12.3. Grain sizes are generally
lognormally distributed.
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present to participate in shunting the current, the rise in resistance for the Al-alloy
can be very abrupt for EM-induced damage. The use of barriers is illustrated in
Fig. 12.5.

For pure copper metallization, the dominant diffusion path during EM testing is
generally along interfaces, rather than along grain boundaries as in Al-alloys. Unlike
aluminum, which forms a strongly bonded Al-oxide layer (Al2O3) on its surface,
Cu-oxide is relatively poorly bonded to the Cu surface. This can provide a high
mobility interface for the Cu-ion transport. In order to reduce Cu-ion mobility along
such interfaces, the Cu should be tightly bounded by well-adhering barrier layers.
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Fig. 12.4 Electromigration-
induced resistance rise in
layered metal stripes (e.g.,
Al–Cu/TiN) shows little/no
resistance rise initially for a
time t0 and then a gradual
rise in resistance. The TiN
layer serves as an
electromigration-resistant
shunting layer to prevent
catastrophic resistance rises
(open-circuit conditions)
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Fig. 12.5 (a) Al-alloy interconnect system for ICs. Grain-boundary (GB) transport in Al-alloy
usually dominates EM performance. Flux-divergence/voiding is often associated with the W-plug
via. (b) Copper interconnect system for ICs. Interfacial transport associated with the Cu/barrier
interfaces usually dominates the EM performance. Flux-divergence/voiding is often associated with
the via
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Normally, the bottom and sidewalls of the Cu lead are bounded by a TiN or TaN
barrier, while the top of the Cu lead has a dielectric barrier such as SiN, SiCOH, or
SiCON. During EM transport, the Cu-ions will select one or more of the weak
interfaces. (See Fig. 12.6 for typical failing locations.)

While differences in the materials properties between Cu and Al can dominate the
mass transport mechanism, Cu metallization is also distinguished from Al because it
is fabricated differently using the so-called damascene or dual-damascene process
flow (refer to Fig. 12.5b). Damascene processes are used, rather than the physical/
sputter-deposition and subtractive-etch processes used to make Al-alloy intercon-
nects, because of better filling characteristics and because of difficulties with devel-
oping plasma etches for the Cu metallization.

In the damascene process flow, trenches are first etched into a dielectric layer
(where the metallization will eventually go) and then the trenches are lined with a
metal barrier material (such as Ta-based metallization) and a thin, physically vapor-
deposited Cu seed-layer. This trench feature is then filled with Cu metallization
using an electroplating process (EP). This is followed by chemical mechanical
polishing (CMP) and subsequent cleans to define the interconnect geometry. Next,
the Cu is capped by a sealing barrier layer, usually a dielectric barrier material.

In the dual-damascene process, the via openings are also formed in addition to the
trench such that via and trench are not separated by a metal barrier as would be the
case for single damascene interconnects. In dual-damascene Cu, a flux barrier (due to
the use of a barrier) is present at the bottom of via.6 This somewhat complicated
interconnect architecture, utilizing dielectric and metal barriers with different inter-
face properties, exhibits a number of flux divergence locations not seen in Al
metallization. For electron flow up into a via (up-direction EM), a flux divergence
is located at the top corner of the trench. For down-direction EM, the flux divergence
location is along the top surface of the lower metal trench where the metal barrier of

Fig. 12.6 Shown is a pictorial (on the left) of where EM-induced damage might be expected in Cu
interconnects. Shown on right is the actual EM-induced voiding

6Via is the term used to describe the physical/electrical connection of an upper level of metal to a
lower level of metal through a dielectric layer.
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the via and the dielectric cap (on the lower metal trench) meet. The voiding volumes
necessary to cause severe resistance rises are also somewhat different for the two
cases, leading to the general observation that down-direction EM failures occur
somewhat faster than up-direction EM.7 Additionally, defects present within a via
may lead to premature EM failure (early or weak-mode failure) for an up-direction
interconnect.

The presence of weak interfaces in Cu metallization, due to the fact that Cu does
not form a strongly adhering native oxide, means that optimization of interfacial
adhesion strength between Cu and the capping layer is critically important. Studies
have shown that improvements in interfacial adhesion strength will improve EM
performance. Also, when the interfacial adhesion is extremely good, as the case with
Co-cladding of the Cu, the EM performance improves dramatically and the Cu EM
performance can then be primarily limited by bulk diffusion, with a corresponding
increase in activation energy Q.

Since electromigration transport is a mass conserving process then, in addition to
the voiding problems, accumulations of the transported metal ions will also occur
thus increasing the mechanical stress in the metallization and surrounding dielec-
trics. This localized buildup of stress in the metallization will serve to generate a
backflow of metal ions (the Blech effect). For shorter leads (generally a few tens of
microns), the Blech effect can be so strong that the backflow of metal ions will cancel
the drift component8 and electromigration-induced failure can be retarded. However,
the buildup of mechanical stress in the metal lead is also accompanied by a buildup
of opposing mechanical stress in the surrounding dielectrics which can cause
potential fracturing of the surrounding dielectrics. Fracture of the surrounding
dielectrics can facilitate the shorting of the test lead to the adjacent metal leads.
For advanced Cu metallizations, which require low-k dielectrics that are relatively
mechanically weak, this potential shorting failure mechanism may need to be
considered.

The model generally used to describe EM time-to-failure takes the form

TF ¼ A0 J eð Þ � J eð Þ
crit

� ��n
exp

Q

KBT

� �
, ð12:2Þ

where:
A0 is a process/material-dependent coefficient. This coefficient can vary from

device-to-device and is the reason that the time-to-failure TF is actually a distribution
of times-to-failure. The device-to-device variation (A0 variation) can be as subtle as
slight microstructure differences in the metallization. A lognormal TF distribution is
generally used for EM failure mechanisms.

7Up (into via) or down (into via) refers to the electron-flow direction.
8Drift and diffusion (backflow) mechanisms were discussed in Chap. 7. If the backflow pressure
(created by the accumulation of material) starts to cancel the drift-induced pressure, then net
material flow ceases.
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J(e) is the electron current density. J(e) must be greater than J eð Þ
crit to produce failure.

J eð Þ
crit is a critical (threshold) current density which must be exceeded before

significant EM damage is expected. J eð Þ
crit can be determined from the Blech length

equation: (J(e) � L )crit ¼ ABlech. For aluminum alloys, ABlech ffi 6,000 A/cm. For
Cu, ABlech ¼ 1,000 to 4,000 A/cm, depending on the mechanical strength of the
surrounding dielectrics and barrier materials. If the test stripe length is >250 μm,
then J eð Þ

crit is typically small compared to the normal EM stressing current density

of >1 MA/cm2. For this reason, J eð Þ
crit is often ignored. However, the Blech effect

may be an important design consideration for very short conductor lengths.
n is the current density exponent. n¼ 2 is normally used for aluminum-alloys and

n ¼ 1 for Cu.
Q is the activation energy. Q ¼ 0.5–0.6 eV is generally used for Al and Al–Si,

Q ¼ 0.7–0.9 eV is used for Al–Cu alloys, and Q ¼ 1.0 eV for pure Cu.
For Al-alloys, time-to-failure will generally show a metal-width dependence,

with the worst case (smallest time-to-failure) occurring for metal widths approxi-
mately 2 times the mean grain size.9 As for copper, the worst-case EM performance
generally occurs with the most narrow metal widths.

Example Problem 1
Find the Blech length when a current density of J(e) ¼ 1 � 106 A/cm2 is
flowing through an aluminum alloy conductor.

Solution
For aluminum alloys, the Blech relation becomes:

J eð Þ � L� �
crit � 6, 000A=cm

) Lcrit � 6, 000A=cm

1� 106A=cm2
¼ 6:0� 10�3cm ¼ 60 μm:

In summary, for a current density of 1 � 106 A/cm2
flowing through an

aluminum-alloy conductor, the electromigration-induced damage should be
relatively small for conductors of length less than 60 μm. This assumes, of
course, that the conductor is adequately constrained by the covering dielectric
layer(s) so that the backflow stresses can develop fully and thus retard the void
growth. If the voiding is in the form of a very thin slit-like void, the backflow
stress may not be strong enough to prevent EM failure. For this reason, the
most conservative design approach is to assume that Jcrit ¼ 0.

9For Al-alloys, stripe widths of approximately 3 μm are typically used for EM testing.
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Example Problem 2
Under typical Al-alloy electromigration testing conditions, the stress current

densities are J eð Þ
stress ~ 1 � 106 A/cm2 and the length of test structures is L ~

1,000 μm. Under these stress conditions, show that J eð Þ
crit is much smaller than

J eð Þ
stress and can therefore be safely neglected during electromigration testing.

Solution
The Blech relation gives for Al-alloys:

J eð Þ � L� �
crit � 6, 000A=cm

) J eð Þ
crit �

6, 000A=cm
1, 000 μm

:
1 μm

10�4cm

� �
¼ 6:0� 104A=cm2:

Therefore, typically during electromigration testing, J eð Þ
crit � J eð Þ

stress ~ 106

A/cm2 and can usually be safely neglected. Since the Blech constant ABlech for
Cu (1,000–4,000 A/cm) is typically smaller than for Al-alloys, then J eð Þ

crit is
usually smaller for Cu versus Al-alloys.

Example Problem 3
Under accelerated electromigration testing of an Al-alloy, at a current density
of Jstress ¼ 2 � 106 A/cm2 and at a metal temperature of Tstress ¼ 200 �C, the
EM data was found to be fitted well by a lognormal distribution with median
time-to-failure of t50 ¼ 200 h and a logarithmic standard deviation of σ ¼ 0.5.
Assuming an activation energy of Q ¼ 0.8 eV and a current density exponent
of n ¼ 2, what is the maximum design current density Jdesign to produce fewer
than 0.13 % failures in 10 years at 105 �C?

Solution
Recall from Chap. 10 that:

AF ¼ TFð Þoperation
TFð Þstress

¼ Jstress
Jdesign

� 	2
exp

Q

KB

1
Tdesign

� 1
T stress

� �
 �
:

During stress, the time-to-fail for 0.13 % of the devices (lognormal distri-
bution from Chap. 7) is:

TF0:13%ð Þstress ¼
t50

exp 3σð Þ ¼
200h

exp 3ð Þ 0:5ð Þ½ 	 ¼ 44:63h:

(continued)
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To last 10 years at 105 �C, one will need an acceleration factor of:

AF ¼ 10 years
44:63 h

¼ 87, 600 h
44:63 h

¼ 1962:8:

Solving the first equation above for Jdesign, one obtains:

Jdesign¼ Jstress

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

Q

KB

1
Tdesign

� 1
T stress

� �
 �
AF

vuuut

¼ 2�106
A
cm2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

0:8eV

8:62�10�5eV=K

1
105þ273ð ÞK� 1

200þ273ð ÞK
� �
 �

1962:8

vuuut

¼ 5:3�105
A
cm2

:

In summary, based on the stated EM data and the planned use conditions
for this metallization, the design current density should be limited to approx-
imately Jdesign = 5.3�105A/cm2.

EM data is normally collected under DC conditions whereas the circuit operation
is AC. This means that a method is needed to transform AC current densities into DC
EM equivalents for design rule checking. For unipolar-current waveforms, J(e) can
be taken as the average current density hJ(e)i. For bipolar current waveforms, a
sweepback recovery action can take place and the effective current density J(e) has

been described by J eð Þ ¼ J eð Þ
þ

D E
� r J eð Þ

�
D E

, where J eð Þ
þ

D E
is the average of the

positive polarity pulses and J eð Þ
�

D E
is the average of the negative polarity pulses.10

The recovery coefficient r has a reported value of at least 0.7. While bipolar
waveforms permit much more allowed current density to flow for EM reasons, one
needs to be careful with Joule heating and limit Jrms.

Electromigration associated with vias must be investigated separately because
they show characteristics which are different from single leads fed by bonding pads.
For example, vias can show different degradation rates depending on electron
current flow direction [upper level of metal (M2) to lower level of metal (M1) may

10It is assumed here that the average of the positive pulses is greater than the average of the negative
pulses.
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be quite different versus M1 to M2]. Also, the degradation rate is strongly dependent
on via structure (barrier layer, capping layer, and via etching), via number, layout,
and a reservoir effect11 can be present.

For Al alloy stripes, terminated by bonding pads and having no barrier metalli-
zation, the total time-to-failure is dominated by nucleation and n is observed to be
equal to 2 (which is commonly referred to as the Black equation).12 However, for
Al-alloy stripes with barrier metal and terminated by tungsten plugs, one may see
both an incubation (nucleation) period dominated by n¼ 2 and a resistance rise (drift
period) dominated by n ¼ 1 (as illustrated in Fig. 12.4). Also, under high current
density test conditions, unaccounted for Joule heating can produce apparent current
density exponents much greater than n ¼ 2. Similar observations hold for Cu
metallization, where a mixture of void nucleation and void growth contributions is
often simultaneously present; however, the trend appears to be weighted more
toward growth-controlled EM and n ¼ 1 is generally used for Cu. In summary,
one may need to be a little cautious (as described in Chap. 10) when extrapolating
highly accelerated data to the expected operating conditions.

IC metallization must be used to make contact to shallow (<0.25 μm) n+ and p+

junctions in CMOS technologies. Being able to build stable/reliable contacts neces-
sitates that a barrier metal be used between the interconnect metal and the shallow
junction. Some common barrier metals often used are TiW, TiN, and TaN. During
contact electromigration transport, the dominant diffusing species which causes
contact failure is reported to be silicon from the contact region. In addition to the
barrier type being important, silicided junctions can also be important relative to
retarding the transport process.

Equation (12.2) can also be used to describe IC contacts (metal to silicon or
silicide) failure due to electromigration. Here, however, the diffusing species which
leads to failure is generally the silicon. Contact electromigration failure occurs when
a buildup of silicon occurs in the contact window (assuming that silicon is in the
aluminum-alloy metallization initially) leading to resistive contact formation; or, an
erosion of silicon from the contact window can lead to junction leakage and failure.
Since the current crowding can be severe in a shallow contact, the actual current
density is non-uniform over the contact window and may be very difficult to specify.
For this reason, normally the contact area is incorporated into the process-dependent
prefactor A0 and the time-to-failure equation is usually written as:

TF ¼ A0I
�nexp

Q

KBT

� �
, ð12:3Þ

11Tabs (extra metal extensions) at the cathode-end connection (acting as a reservoir/source of
additional metal ions) can slow down the voiding rate and thus can improve the time-to-failure.
12Jim Black was the first to propose a current density exponent of n ¼ 2 for electromigration in
Al-alloys, without barrier layers, where the void nucleation phase tends to dominate the time-to-
failure. However, n ¼ 2 is not valid for all metal systems, e.g., n ¼ 1 is used for Cu metallization.
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where I is the current flowing into or out of the contact window during EM testing.13

For aluminum-alloy to silicon contacts, the reported values of activation energy are
generally in the range 0.8–0.9 eV. For silicided (TiSi2, TaSi2) contacts the values are
higher 1.1–1.5 eV.Due to the extreme localized nature of the self-heating during contact
stressing, the values for n have been reported to be as low as 1 and as high as 11.14

2 Stress Migration

Mechanical stress-related failures are very important for IC devices. When a metal is
placed under a mechanical stress which exceeds its yield point, the metal will
undergo plastic deformation with time.15 This time-dependent phenomenon is
described by metallurgists as creep. The creep will continue until the stress level is
brought below the yield point or until the metal fails. This metal failure mechanism is
especially important for ICs where one is confronted with: on-chip aluminum-alloy
or copper metallization, gold ball-bonds and wires, iron-alloy or copper lead-frames,
solder joints, etc.

Stress migration in ICs is the term used to describe the flow of metal atoms
under the influence of mechanical stress. Generally, this failure mechanism is
driven by creep (under a fixed-strain condition) and, as such, it is a stress-relief
mechanism for the metallization on the chip.16 This stress-relief mechanism
(resulting in void formation in the IC metallization) will generally continue until
the mechanical stress in the metallization is relieved below its yield point
(as discussed in Chap. 13).

13The current I, as used here, is a virtual stress (discussed in Chap. 9 (Sec. 4)) because TF depends
strongly on the dimensions of the contact. The use of a real stress, such as current density J(¼I/
Area), would normally be preferred. However, due to current crowding effects in the small contact
window, the current density is very non-uniform and difficult to describe. For this reason, the virtual
stress current I is used.
14Joule(or self) heating can be an important issue for contacts. Even though the ambient temperature
may be held constant, the actual contact temperature can vary greatly with the current level applied.
If the self heating is not properly accounted for, then very high apparent n values are obtained.
15This is normally referred to as plastic (versus elastic) deformation. Elastic deformations tend to
produce no damage to the material while plastic deformations tend to cause some amount of
permanent change to the material.
16Generally, metals will tend to flow in order to relieve the stress in the material. Unfortunately,
such mass flow can result in notching/voiding in the metal.
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2.1 SM in Aluminum Interconnects

Actually, mass flow occurs due to stress gradients in the material, not simply due to
the applied stress in the material. Usually, the stress gradients are assumed to be
proportional to the applied mechanical stress σ. The source of this stress σ can be
intrinsic and/or thermomechanical stress.

Relatively little permanent atom movement occurs until the stress σ exceeds
the yield point of the metallization. The flux of the moving metal atoms is
primarily along grain boundaries as illustrated in Fig. 12.7, but may also occur within
a grain if the metal lead is very narrow and the grain structure can be considered
bamboo-like.17

The inevitable flux divergence associated with the metal movement can cause
notching and voiding to occur in IC metal leads/stripes (see Fig. 12.8).18 The
resistance rise associated with the void formation can cause electrical failures. The
time-to-failure (TF) due to creep is described by

Fig. 12.7 Mechanical stress gradients can cause metal atoms to flow (creep) in an effort to relieve
the stress energy. The small grain C, with high specific-energy grain boundaries as illustrated in (a),
may be absorbed by grains A and B to facilitate the stress relaxation shown in (b). As for Cu, the
dominant diffusion paths may be along Cu/barrier interfaces

Fig. 12.8 Stress migration
has served to produce
notching/ voiding in the
Al-alloy metal lead shown

17Grain boundaries which are nearly perpendicular to the metal stripe length.
18As discussed in Chap. 13, the strain energy reduction/release is greater than the energy increase
associated with the creation of new surfaces.
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TF ¼ A0σ
�nexp

Q

KBT

� �
, ð12:4Þ

where:
σ is the tensile stress in the metal for a constant strain19;
n is the stress migration exponent. n ¼ 2–4 for soft metals such as aluminum and

copper, n ¼ 4–6 for mild steels, and n ¼ 6–9 for very strong/hardened metals; and
Q is the activation energy. Q 
 0.6–0.8 eV for grain-boundary diffusion in alumi-
num, Q 
 1 eV for within-grain (bamboo-like) diffusion in aluminum.

For on-chipmetallization, the dominant mechanical stress is generated by thermal
expansion mismatch of the metal and the constraining surrounding materials. For
this reason, the stress is referred to as thermomechanical stress and σ is proportional
to the change in temperature, i.e.,

σ / ΔT : ð12:5Þ

Therefore, if the metal creep is caused by thermomechanical stress, then the time-
to-failure, Eq. (12.4), can be expressed by20:

TF ¼ A0 T0 � Tð Þ�nexp
Q

KBT

� �
ð12:6Þ

where:
T0 is defined as the stress-free temperature for the metal.21

The role of stress and stress relaxation is very important in the nucleation and
growth of voids in aluminum-alloy interconnects. Cu doping in the aluminum is
somewhat effective in suppressing grain-boundary diffusion, but is much less
effective if the grain size is large compared to line width. In these bamboo-like
leads, one observes slit-like void formation due to intra-grain diffusion.

To test for SM, typically long (>1,000 μm) and narrow stripes (<2 μm width) are
stored at temperatures in the range 150–200 �C for 1–2 kh and then electrically tested
for resistance increases (or reduction in breakdown currents).22 The SM baking
temperature should be carefully selected because, as predicted from Eq. (12.6),
there is a maximum in the creep rate (as illustrated in Fig. 12.9). This generally

19The metallization on a chip is constrained (fixed strain) due to the hard dielectrics surrounding the
metallization. The creep, in this case, is a stress-relaxation mechanism under fixed strain which can
lead to void formation.
20This equation is usually referred to as the McPherson and Dunn Model for stress migration in
interconnects.
21The prefactor (T0-T ), in Eq. (12.6), can be expressed in �C or K, since this is a difference of two
temperatures. However, the temperature in the exponential term must be expressed in K.
22The breakdown current is determined by ramping the current to breakdown. If the metal stripe has
a notch/void in it, then the breakdown current should be lower.
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occurs in the 150–200 �C range and serves to drive a minimum in the time-to-failure
Eq. (12.6). This maximum in the creep rate occurs (because of competing mecha-
nisms as discussed in Chap. 3) due to the high stress (but low mobility) at lower
temperatures, and low stress (but high mobility) at high temperatures. Because the
mechanical stress is temperature dependent, a straightforward determination of the
diffusion activation energy is somewhat difficult to obtain. Generally, Q ~
0.5–0.6 eV is used for grain-boundary diffusion and ~1 eV for single-grain/bulk-
diffusion.

The use of refractory metal barriers or layered metallization has tended to greatly
reduce the impact of the damage caused by slit-like void formation in bamboo leads.
This is because the refractory metal layer tends to serve as a redundant conductor,
shunting the current and reducing the electrical resistance rise when a SM-induced
void forms.

2.2 SM in Cu Interconnects

Stress migration in Cu metallization (see Fig. 12.10) is also a concern, despite an
expectation that Cu’s generally superior EM capabilities would translate to signifi-
cantly improved stress migration performance.

Similar to a comparison between Al and Cu EM, as it pertains to its use in
advanced IC technology, the contrasting fabrication methods used for Cu vs. Al
generate pronounced differences in the type of stress migration issues that are found
in the different metallizations. A basic difference between Cu and Al lies with their
different melting points: 1,083 �C vs. 660 �C, respectively. Normal interconnect
processing temperatures during integrated circuit fabrication can be as high as
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Fig. 12.9 Stress migration-induced creep/voiding rate has a maximum at a critical temperature
(which is generally in the 150–200 �C range for Al-alloys). This maximum in the creep/voiding rate
occurs because of the low mobility (but high stress) at lower temperatures and low stress (but high
mobility) at elevated temperatures
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400 �C, which is a substantial fraction of the melting temperature of Al but to a lesser
degree for Cu. Hence, the processing of Al metallization can lead to grains that are
large and well-formed within interconnect wiring (so-called bamboo structure for
narrow metal leads)—but similar processing temperatures do not greatly alter the
microstructure of Cu after it has reached a certain level of stability. Therefore, the
grain structure within Cu interconnect wiring is much more varied, both grain size-
wise and texture-wise. Electroplated Cu also greatly impacts the evolved micro-
structure such that narrow lines remain small grained, whereas wider lines develop
larger grains.

Like Al stripes, Cu stripes can show evidence of SM-induced voiding; however,
because of the presence of a somewhat redundant metal barrier and the lack of
sufficient bamboo character to the Cu grains, its general impact on reliability may not
be quite as strong. However, when a void forms under or within vias,23 as shown in
Fig. 12.10 and illustrated in Fig. 12.11, the reliability impact can be substantial,
especially when the via is an electrically weak link along the interconnect path. This
via-voiding impact is felt most severely when wide leads are placed over and/or
under single vias.24 As indicated by the voiding illustrated in Fig. 12.11, once a void
is nucleated, an ample supply of vacancies can be provided within wide Cu leads to
enlarge the void, within the via or under a via, and enable very resistive or open-
circuit formation.

Fig. 12.10 Stress-induced
voiding under a single via in
a copper interconnect
system. Wide Cu lines are
servicing the via

23On a chip, there can be several levels of metallization, stacked on top of one another with a layer
of dielectric in between metal levels. The via is an electrical connection, through the dielectric layer
(s), from an upper metal level to a lower metal level.
24The voiding is a stress-relief mechanism as discussed in Chap. 13. Void growth occurs because of
vacancy flow due to stress gradients. More vacancies are available in wide Cu-leads versus
narrow ones.
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Void growth continues until the local stress is relaxed below its yield point.
Baking (or annealing) data is shown in Fig. 12.12 for single vias to wide Cu-lead test
structures. The Cu-via baking data, similar to aluminum metallization previously

ILD

SiNx
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s + s – s – s +

dl

M2

M1

Barrier

Fig. 12.11 Due to the fact that at least some of the plated Cu annealing during processing is done
while the Cu is fully constrained by the barrier layers and dielectric layers, the Cu metallization
becomes super-saturated with vacancies along grain boundaries and interfaces. These vacancies can
move under presence of stress gradients and generally flow from tensile regions to compressive
regions. Voiding under/within via is a stress-relief mechanism

Fig. 12.12 Baking/annealing data is shown for single-via to wide Cu-lead test structures. These
stress migration results show that a maximum occurs in voiding rate (creep rate) at a critical
temperature in the range between 150 and 200 �C. This critical temperature is independent of the
resistance rise failure criteria used
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discussed (refer to Fig. 12.9), show that a maximum occurs in via failure rate (creep
rate). The critical temperature (150–200 �C) at which the maximum occurs is
roughly independent of the resistance rise used to define TF.

The resistance-rise data in Fig. 12.12 is indicative of the voiding/creep rate. Thus,
fitting the stress-migration data in Fig. 12.12, using the McPherson and Dunn creep/
voiding rate model, one obtains:

Creep Voidingð ÞRate ¼ B0 T0 � Tð Þnexp � Q

KBT

� 	
, ð12:7Þ

where: stress exponent n ¼ 3.2, an activation energy of Q ¼ 0.74 eV, and a stress
free temperature for the Cu of T0 ¼ 270 �C. The maximum in the creep/voiding rate
occurs at a temperature close to Tcrit ¼ 190 �C. The fitting is shown in Fig. 12.13.

Example Problem 4
Show that if the creep rate [Eq. (12.7)] has a maximum in it, then the three
kinetic parameters (n, Q, T0) are not independent and must obey the equation:

Q ¼ nKB
T2
crit

T0 � Tcrit

� �

Also show that the best fitting parameters (shown in Fig. 12.13) do indeed
satisfy this equation.

Solution
One can easily show that if R(T) has a maximum at T ¼ Tcrit, then ln[R(T)]
also has a maximum at T ¼ Tcrit.

(continued)

Fig. 12.13 Fitting of the
relative creep-rate data
(extracted from Fig. 12.12)
produces the kinetic
parameters: stress
dependence exponent of n¼
3.2, an activation energy of
Q ¼ 0.74 eV, and a stress-
free temperature of 290 �C.
The maximum in the creep/
voiding rate occurs at: Tcrit
¼ 190 �C
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Proof
For a maximum to exist in R(T) then it is necessary that:

dR
dT

� �
T¼Tcrit

¼ 0:

If we investigate ln[R(T)], one obtains:
d ln R Tð Þ½ 	

dT

� �
T¼Tcrit

¼ 1
R

dR
dT

� �� 	
T¼Tcrit

¼ 1
R Tcritð Þ

dR
dT

� �
T¼Tcrit

¼ 0: There-

fore, if R(T) has a maximum in the function at T¼ Tcrit, then ln[R(T)] will also
have a maximum at T ¼ Tcrit. Taking the natural logarithm of both sides of the
Eq. (12.7), one obtains:

ln R½ 	 ¼ ln B0ð Þ þ n ln T0 � Tð Þ � Q

KT
:

Taking the derivative, and evaluating at T ¼ Tcrit, one obtains:

d ln R Tð Þ½ 	
dT

� �
T¼Tcrit

¼ 0 ¼ � n

T0 � Tcrit
þ Q

KBT2
crit

,

giving

Q ¼ nKB
T2
crit

T0 � Tcrit

� �

Finally, we check to see if the best fitting parameters, shown in Fig. 12.13,
actually satisfy this equation:

Q ¼ nKB
T2
crit

T0 � Tcrit

� �
¼ 3:2 8:62� 10�5eV=K

� ��
190þ 273ð ÞK½ 	2

270þ 273ð ÞK� 190þ 273ð ÞK

 !
¼ 0:74eV

This activation energy agrees well with the best fitting activation energy
Q ¼ 0.74 eV shown in Fig. 12.13.
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3 Corrosion

Corrosion failures can occur when ICs are exposed to moisture and contaminants. IC
corrosion failures are usually classified as one of two broad groups: bonding-pad
corrosion or internal-chip corrosion. The bonding pad is a rather large piece of
on-chip metallization on the order of 50 � 50 μm. These bonding pads, historically,
have provided the metallization contact surface for eventual Au or Cu-wire ball
bonding (refer to Figs. 12.14, 12.20 and 12.21). This wire bonding permits electrical
connection of the chip to the outside world. Bonding-pad corrosion can occur during
die processing and/or post assembly.25 Bonding pads that are connected/grounded to
the silicon substrate (see Fig. 12.14a) are especially sensitive to corrosion. Bonding-
pad corrosion is usually more common (than internal-chip corrosion) simply because
the die-level passivation (often either silicon nitride or oxynitride) does not cover the
bonding-pad metallization. Furthermore, any residual chlorides from aluminum
and/or protective overcoat etching, plus moisture, can cause Al corrosion.26

Fig. 12.14 (a) Corrosion of
aluminum bonding pads can
occur if chlorides and
moisture are present.
Grounded (Vss) pads are
especially sensitive to
corrosion. (b) Exposed Cu
stripes can corrode during
processing in the time
window between post-CMP
Cu-clean and cap-layer
dielectric deposition. The
volume of the corrosion
product, usually Cu(OH)2,
can be much larger than the
volume of Cu consumed

25Assembly describes the process used to encapsulate a silicon chip into plastic packaging with
electrical connections to the outside world. This process includes: silicon chips are first separated
from the wafer (usually by sawing), chips are then attached to a lead frame, the lead frame is then
molded in plastic, and finally the leads are trimmed and formed.
26If Al corrosion occurs in a liquid state, the corrosion may have the appearance of simply missing
aluminum. If Al corrosion occurs in humidity/moisture, the corrosion product (usually aluminum
hydroxide) can be expansive in size and will appear to be black, under an optical microscope, due to
its very rough/cracked texture. The volume of the corrosion product, usually Al(OH)3, can be much
larger than the volume of Al consumed.
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Internal corrosion (internal to the chip, away from the bonding pads) can also
occur if some weakness or damage exists in the die passivation layer which could
permit moisture and contaminants (e.g., chlorides) to reach the exposed metalliza-
tion. The internal corrosion can cause electrical discontinuities at localized regions
of die.

Corrosion can be generally described in terms of a corrosion cell.27 The corrosion
cell must have four key components in order for corrosion to occur: an anode
(a region for the oxidation reaction to occur), a cathode (a region for the reduction
reaction to occur), an electrolyte (through which the ions can diffuse), and a
conductor to provide a pathway for the electron flow from the oxidation region to
the reduction region. An example of wet corrosion is shown in Fig. 12.15. Metal
corrosion (oxidation) can occur if there is an imperfection in the native oxide
covering the metallization.

Generally, Al forms a good self-passivating oxide and it is much less corrosive
than Cu, even though the Galvanic Series28 would suggest just the opposite.
However, if chlorides and moisture are present, then the Al2O3 native oxide
protecting the Al can be quickly reduced. Once the native oxide is reduced, exposing
a highly reactive virgin metal surface, the corrosion can proceed rapidly.

In order for the corrosion to continue at a rapid rate, the ions must be able to
diffuse rapidly to and from the regions of oxidation/reduction.29 This can occur most
easily in liquids because the activation energy for diffusion in a liquid is generally
very low ~0.3 eV. However, for dry or ambient corrosion (see Fig. 12.16), the
activation energy for diffusion is generally higher and the corrosion rate is very
dependent on the percentage relative humidity (%RH). In fact, the surface mobility
on oxide has been found to be exponentially dependent on %RH over a rather wide
range of %RH. With the surface mobility limited by the %RH, as illustrated in

Fig. 12.15 Wet corrosion
generally occurs with low
activation energy because of
the very high mobility of the
diffusing ions in water. The
ions must be able to diffuse
away from the anode/
cathode region for the
corrosion cell to continue to
work. In water, this
diffusion process is
relatively easy

27The corrosion cell is discussed in more detail in Chap. 13.
28The Galvanic Series is discussed in Chap. 13.
29If the ions cannot diffuse away from the region of oxidation/reduction, then a rise in electrical
potential will retard the corrosion potential.

184 12 Time-to-Failure Models for Selected Failure Mechanisms in Integrated Circuits



Fig. 12.16, then the time-to-failure is expected to be limited by the humidity. Also,
an expansive corrosion product M(OH)n can develop.

During IC wafer processing, Cu-ions (which are produced during oxidation at
some location in the circuit) can diffuse away from this region of oxidation and then
may plate out again at other locations in the circuit. In Fig. 12.17, we show a Cu-via
(Cu-via contacted to a W-plug) to n-well. Since this is, in effect, a grounded Cu-via,
any free Cu-ions on the surface of the dielectric can diffuse and plate out by
reduction at these grounded locations: Cu2+ + 2e ! Cu. One can see in
Fig. 12.17a the Cu-plated nodules at the perimeter of the grounded Cu-via and
how this region will continue to grow with time as shown in Fig. 12.17b. This is
quite interesting. It should be emphasized that the Cu, which was originally electro-
chemically plated and chemically–mechanically polished, is now being replated by a
secondary oxidation and reduction reaction.

Fig. 12.16 Ambient corrosion has a very strong humidity dependence and an expansive corrosion
product M(OH)n can develop. The percentage relative humidity (%RH) has a great impact on
surface/interface mobility. The ions have to be able to diffuse from the anode/cathode regions for
the corrosion cell to work. Otherwise, the buildup of localized ions will create an electrical potential
that will tend to offset the chemical corrosion potential

Fig. 12.17 Generally, immediately after chemical–mechanical polishing (CMP) of the plated Cu
on a wafer, the exposed Cu is susceptible to oxidation. The oxidation of the Cu (in other parts of the
circuit not shown) serves to free Cu-ions which can then diffuse across the dielectric surface. (a) If a
grounded node (such as the Cu-via to an N-well connection shown above) can be found, then a
reduction/re-plating of the Cu-ions can occur resulting in the unwanted Cu-nodules, as are shown in
early stages in (a). The later stages are shown in (b)
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The relative corrosion activities for Copper and Aluminum are shown in
Fig. 12.18 as a function of applied voltage. The strong native oxide (Al2O3) on
aluminum serves as a self-passivation layer and the corrosion activity for Al is
relatively low and is nearly independent of the applied voltage (from 0 to 0.8 V).
However, the native oxide (CuxOx) on copper is of relatively poor quality and does
not protect the exposed copper—and a higher corrosion activity30 is observed. In
order to reduce the corrosion activity of the exposed Cu, corrosion inhibitors are
generally used. BTA (benzotriazole: C6H5N3) is a commonly used corrosion inhib-
itor which is added during CMP of the Cu to reduce post-CMP corrosion. The BTA
serves to reduce the corrosion activity of the Cu to manageable levels during
processing. However, even with the use of corrosion inhibitors, it is good practice
to establish a tight processing time window between CMP processing of the Cu and
dielectric barrier deposition in order to minimize corrosion.

To monitor the corrosion susceptibility of packaged chips, the industry generally
uses one or more of three standard corrosion tests. These three tests have been widely
used to accelerate potential IC corrosion failure mechanisms: biased 85 �C and 85 %
RH, autoclave (121 �C and 100 %RH), and highly accelerated stress test (HAST)
conditions (typically biased, 130 �C and 85 %RH). To extrapolate packaged-chips
corrosion results, under highly accelerated conditions to use conditions, at least three
models have been used.
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Cu
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Fig. 12.18 Corrosion activity is shown as a function of applied voltage. The corrosion activity of
the Cu is much higher than Al. The corrosion activity of the Cu can be reduced by adding thin
protective layers such as BTA during processing

30Corrosion activity was measured by monitoring the resistance rise vs. time, for a metal stripe
when the test structure was stored in an ammonium-chloride solution.
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3.1 Exponential Reciprocal-Humidity Model

The time-to-failure equation for IC failure due to corrosion is

TF ¼ A0exp
b

RH

� �
exp

Q

KBT

� �
, ð12:8Þ

where:
A0 is a process/material-dependent parameter and serves to produce a distribution

of times-to-failure (Weibull or lognormal distributions),
b is the reciprocal humidity dependence parameter (approximately equal to ~300%),
RH is the relative humidity expressed as a %,31 and Q is the activation energy

(approximately equal to 0.3 eV for phosphoric acid-induced corrosion of aluminum
and generally consistent with wet corrosion.32

This model was developed when phosphosilicate glass (PSG) was used for
interconnect dielectric and/or passivation.33 Too much phosphorus (>8 %) in the
glass and the phosphorus would precipitate onto the glass surface and along its
interfaces. With the addition of moisture, this would cause phosphoric acid to form
which would attack the metallization.

3.2 Power-Law Humidity Model

The time-to-failure equation for IC failure due to corrosion is

TF ¼ A0 RHð Þ�nexp
Q

KBT

� �
, ð12:9Þ

where:
n is the power-law exponent and equal to 2.7,
RH % relative humidity, and
Q is the activation energy and equal to 0.7–0.8 eV for chloride-induced corrosion

of aluminum.

31100 % relative humidity represents saturated water vapor.
32This low value of activation energy (0.3 eV) is typical for wet corrosion mechanisms where the
mobility of the diffusing ions is good. Due to a very high concentration of phosphorus in the PSG,
liquid droplets of phosphoric acid can develop under humid conditions.
33The phosphorus in the glass is very useful in gettering unwanted sodium ions. The Na ions, if
present, can induce a surface-inversion failure mechanism. The surface-inversion failure mecha-
nism is discussed in Sect. 6.
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This model was developed for chloride-induced corrosion in plastic-packaged
chips. Chlorine-based dry etches are generally used for the aluminum-alloy metal-
lizations. If excessive amounts of chlorides are left on the die after post-etch
cleanups, corrosion can occur with the addition of moisture.

3.3 Exponential Humidity Model

The time-to-failure equation for integrated circuit failure due to corrosion is

TF ¼ A0 exp �a � RHð Þexp Q

KBT

� �
, ð12:10Þ

where:
a is the humidity acceleration parameter and is equal to 0.10–0.15 (%RH)–1, RH

is the % relative humidity, and
Q is the activation energy and is equal to 0.7–0.8 eV for chloride-induced

corrosion of aluminum in plastic packages.
This corrosion model was developed when it was shown that, over a wide range

of humidity (20–80 %), the surface conductivity is exponentially dependent on the
humidity, as shown in Fig. 12.19.

There seems to be reasonably good consensus that the proper activation energy
for chloride-induced aluminum corrosion is in the 0.7–0.8 eV range. There is not a
consensus for the humidity dependence. A comparison of the three models for the
same data set tended to show some preference for the exponential model with a
~0.10–0.15 (%RH)–1. However, the power-law model is a widely used corrosion
model in the IC industry for plastic-package chips.
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Fig. 12.19 The surface conductivity for SiO2 over a wide range of humidity was observed to be
exponentially dependent on the % relative humidity. An exponential acceleration parameter of a ¼
0.12 (%RH)-1 was observed
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Example Problem 5
For an ambient relative humidity of 40 % in a wafer fab, it was established that
the longest corrosion-free time (time window) that a Cu metallization could be
exposed to the ambient conditions was 4 h. If the humidity due to a clogged
filter increases the relative humidity from 40 to 50 %RH, what would the new
time window be?

Solution

AF ¼ TFð Þ40%RH

TFð Þ50%RH

¼ exp a � 50%RH� 40%RHð Þ½ 	

Assuming that a ¼ 0.12 (%RH)–1, then

AF ¼ exp 0:12 %RHð Þ�1 50%RH� 40%RHð Þ
h i

¼ 3:32

Therefore, the time window becomes:

TFð Þ50%RH ¼ TFð Þ40%RH

AF
¼ 4h

3:32
¼ 1:2h:

In summary, by the humidity going from 40 to 50 %RH, the safe (corrosion
free) processing time window for the metallization is reduced from 4 to 1.2 h.

4 Thermal-Cycling/Fatigue Issues

Each time the assembled Si-chips are powered up and down, the assembled chips
undergo a thermal cycle. Thermal cycling can induce important fatigue34 failure
mechanism for fully assembled chips. As shown in Fig. 12.20, the thermal expansion
mismatch of the diverse materials used on the chip and during assembly can result in
significant thermomechanical stresses. These thermomechanical stresses, and the
cyclical nature of the power up and power down of the devices, can generate fatigue
failures. For example, the lifted bonding ball shown in Fig. 12.21 resulted from
thermomechanical stress during temperature cycling. The thermomechanical stress
(generated by the thermal expansion coefficient mismatch of the: plastic molding
compound, gold bonding ball, Au–Al intermetallics, Al pad, and silicon chip) served
to weaken the bond during thermal cycling and eventually led to failure of the ball-
bond attachment.

34Fatigue failure can result from cyclical stresses as discussed in Chap. 13.
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Thermal cycling of a device will naturally occur each time the assembled chips
undergo a normal power-up and power-down cycle. Such thermal cycles can induce
a cyclical thermomechanical stress that tends to degrade the materials, and may
cause a host of potential failure modes: dielectric/thin-film cracking, lifted ball-
bonds, fractured/broken bond wires, solder fatigue, cracked die, etc.

The thermomechanical stresses during thermal cycling can be very large due to
the large thermal expansion mismatch that exists between the silicon, on-chip
dielectrics and metallization, lead frame, and the plastic molding compound used
for chip encapsulation. Thus, to accelerate thermal-cycling failure mechanisms, the
assembled chip(s) may be accelerated by using temperature cycling ranges outside
the normal range of operation and then recording the number of cycles-to-failure.
Some commonly used accelerated temperature cycling ranges for ICs include: -65
�C/150 �C, -40 �C/140 �C, and 0 �C/125 �C.

Fig. 12.20 Shown is a
multiple-die stack with the
on-die bonding pads, ball-
bonds to these pads and the
ball wires. The individual
die/chips are separated by
adhesives. This ensemble of
stacked-die will be
eventually encapsulated in
plastic for handling. Thus,
the thermal expansion
mismatch of dissimilar
materials is ever-present
during temperature cycling
of the assembled die

Fig. 12.21 Au ball-bond,
originally bonded to an
aluminum bonding pad on
the die, has become
detached during temperature
cycling. The facture under
the ball-bond is clearly
evident in the micrograph
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As for modeling, one can assume that each thermal cycle generates plastic
deformation which serves to damage the materials, as illustrated in Fig. 12.22. For
ductile materials, low-cycle fatigue data is described rather well by the Coffin-
Manson model35:

CTF ¼ A0 Δεp
� ��s

, ð12:11Þ

where:
CTF is the number of cycles-to-failure,
Δεp is the plastic strain range,36 and
s is an empirically determined exponent.
Low-cycle fatigue usually refers to stress conditions that only require a few

hundred (or few thousand) cycles to produce failure. High-cycle fatigue usually
refers to stress conditions which may require hundreds of thousands of cycles to
produce failure.

During a temperature cycle, not all of the entire temperature range ΔT may be
inducing plastic deformation. If a portion of this range ΔT0 is actually in the elastic
range, then this should be subtracted and one can write a modified Coffin–Manson
equation as:

Fig. 12.22 Thermomechanical stresses during temperature cycling can cause plastic deformation
and fatigue damage to on-chip metallization and their interfaces. Temperature cycling can also
accelerate crack propagation in more brittle dielectric materials. The aluminum (in top layer metal)
has shifted from left to right during temperature cycling. The accumulation of Al became so great
that the surrounding dielectric cracked, thus permitting an Al extrusion to occur

35Coffin-Manson model is discussed in more detail in Chap. 13.
36The plastic strain range is outside the normal elastic region. Damage is occurring to the material in
the plastic range.
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Δεp / ΔT � ΔT0ð Þβ: ð12:12Þ

Thus, for temperature cycling, the Coffin–Manson equation becomes:

CTF ¼ A0 ΔT � ΔT0ð Þ�q, ð12:13Þ
where q is an empirically determined exponent. This equation is commonly referred
to as the Dunn and McPherson equation. If the elastic range (ΔT0) is much smaller
than the entire temperature cycle range (ΔT ), then it may be dropped without
significant error being introduced. However, one should always question the
assumption as to whether (ΔT0) is an insignificant part of total thermomechanical
stress range (ΔT ).

As illustrated in Fig. 12.23, fatigue can also occur in brittle materials due to crack
propagation. Normally, there are three distinct phases to brittle material failure: a
crack initiation phase (which usually exists at time zero), a crack growth phase
(which tends to dominate the number of cycles-to-failure), and a catastrophic failure
phase which is typically of relatively short duration.37 Since the crack growth phase
is of greatest duration (dominates the number of cycles-to-failure), the modeling
effort is usually focussed on this phase. Experimentally, one finds that the crack
growth rate (increase in crack length per cycle) is dependent on the length of the
existing crack and on the applied cyclical stress so, one can write:

dL
dN

¼ C σað ÞmLn, ð12:14Þ

where L is the crack length, N is the number of cycles, σa is the applied cyclical
stress, m and n are empirically determined exponents. Separating the variables and
integrating gives:

CTF ¼ 1
C

� 	 ðL f

L0

dL
Ln

2
64

3
75 σað Þ�m ¼ B0 σað Þ�m: ð12:15Þ

Fig. 12.23 Thermomechanical stress, during temperature cycling, can cause crack propagation
(fatigue damage) for brittle materials and their interfaces

37Additional information on crack propagation can be found in Chap. 13.
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In the previous equation, it is clear that B0 is a function of crack size (the initial
crack size L0 and how large a crack is needed to produce failure Lf). Since B0 will
vary from device-to-device, B0 causes CTF to actually become a cycles-to-failure
distribution with either the lognormal or Weibull distribution preferred to describe
the statistical data.

Since the cyclical stress is assumed to be thermomechanical, σa is proportional to
ΔT, then cycles-to-failure becomes:

CTF ¼ A0 ΔTð Þ�q, ð12:16Þ
which is very similar to Eq. (12.13) for ductile materials. Thus, while the Coffin–
Manson model was originally developed for ductile materials (metals), it has also
been successfully applied to brittle materials with the appropriate selection of
exponents as summarized in Table 12.1.

In summary, temperature cycling failures for integrated circuits can be described
reasonably well by the modified Coffin–Manson equation. The equation works
rather well even for brittle materials, where failure is dominated by crack growth
rather than simple plastic deformation (which was assumed in the development of
the original Coffin–Manson equation).

Example Problem 6
During a temperature cycling stress test of packaged die/chips, it was deter-
mined that the units were able to pass 500 cycles of temperature cycling from
�65 to 150 �C but started to fail at 600 cycles. Failure analysis indicated that
the failure mechanism was lifted ball-bonds due to fractured intermetallics
(intermetallic region between the Au-ball and the Aluminum bonding pad).
Assuming that the full thermomechanical stress range of �65 to 150�C is in
the plastic-deformation region for the intermetallic, and a cycling exponent of
n ¼ 4, estimate how long the parts should survive for use conditions of 0 to
85�C.

Solution
Assuming that the entire thermomechanical stress range is in the
plasticdeformation region for the intermetallic layer and that the temperature
cycling exponent is q¼ 4 for intermetallics, then the acceleration factor becomes:

AF¼ CTFð Þ0 to 85oC

CTFð Þ�65 to150oC

¼ ΔTð Þ�65 to150oC

ΔTð Þ0 to 85oC

� 	4
¼ 150oC� �65oCð Þ

85oC� 0oC

� 	4
¼ 40:9

(continued)

Table 12.1 Temperature-
cycling exponents

Material Temp-cycle exponent

Soft metals (Solder, Aluminum, etc.) q ¼ 1–3

Hard metals/Intermetallics q ¼ 3–6

Brittle materials (Dielectrics) q ¼ 6–9
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Therefore, the cycles-to-failure CTF, for 0 to 85�C, becomes:

CTFð Þ0 to 85oC ¼ AF: CTFð Þ�65 to 150�C ¼ 40:9ð Þ � 500 cycð Þ ¼ 20, 450 cyc

Assuming that the device is temperature cycled from 0 to 85 �C, on average
4 times a day, then the time-to-failure TF becomes:

TF ¼ 20, 450cyc
4 cyc=day

� 24 h
1 day

� �
1year

8, 760 h

� �
¼ 14 years

5 Time-Dependent Dielectric Breakdown

Due to the very high operating electric fields in the gate dielectric of MOSFET
devices, time-dependent dielectric breakdown (TDDB) can be an important IC
failure mechanism. Usually after a relatively long period of degradation (bond-
breakage/trap-creation) as illustrated in Fig. 12.24a, the dielectric eventually
undergoes breakdown (a catastrophic thermal runaway condition due to severe

Fig. 12.24 (a) Dielectric degradation occurs due to broken bonds/trap-creation in the dielectric
material and at the SiO2/Si interface. (b) The trapping of the holes initially and then followed by
electron trapping continues up to the point of catastrophic breakdown whereby the localized Joule
heating produces a melt-filament shorting the poly-gate and silicon substrate. In very thin dielectrics
(<10 nm), the pre-breakdown leakage may show a stress-induced leakage current increase prior to
breakdown of the dielectric. Also, hyper-thin dielectrics (<4 nm) can show soft breakdown
characteristics
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current flow). This localized current density and associated severe Joule heating can
result in a conductive filament forming in the dielectric shorting the poly38 gate to the
substrate (thus shorting anode and cathode) in the MOSFET device (see
Fig. 12.24b). Historically, there are two TDDB models which have been widely
used to describe the time-dependent dielectric breakdown failure mechanism in
oxides. One model is field-driven (E-Model) while the other is current-driven
(1/E—Model).

5.1 Exponential E-Model

In the thermochemical E-Model,39 the cause of low-field (<10 MV/cm) and high-
temperature TDDB is due to field-enhanced thermal bond-breakage. In this model,
the field serves to stretch polar molecular bonds thus making them weaker and more
susceptible to breakage by standard Boltzmann (thermal) processes. Since the field
reduces the activation energy required to break a bond, then the degradation rate is
expected to increase exponentially with field.

Time-to-failure occurs when a localized density of broken bonds (or percolation
sites) becomes sufficiently high to cause a conductive path to form from anode to
cathode.

The time-to-failure equation, which is the inverse of degradation rate, decreases
exponentially with field,

TF ¼ A0exp �γEoxð Þexp Q

KBT

� �
, ð12:17Þ

where:
γ is the field acceleration parameter,
Eox is the electric field in the oxide and is given by the voltage dropped Vox

40

across the dielectric divided by the oxide thickness tox,
Q is the activation energy (enthalpy of activation), and
A0 is a process/material-dependent coefficient that varies from device-to-device

and causes TF to actually become a times-to-failure distribution, usually a Weibull
distribution.

38Poly is short for polycrystalline silicon. Doped-poly has been a common electrode material for
MOSFETs for many years. Advanced ICs may use metal gate electrodes.
39The E-Model was originally introduced as an empirical model and was later given a theoretical
thermochemical foundation by McPherson.
40For MOS-type capacitors on silicon, when stressing in accumulation: Vox ffi Vapplied � 1 V.
Whereas, when stressing in inversion: Vox ffi Vapplied.
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Many investigations have shown that γ is temperature dependent and that it can
be described rather well by a simple 1/T dependence:

γ Tð Þ ¼ � ∂ ln TFð Þ
∂E

� 	
T

¼ peff
KBT

: ð12:18Þ

The effective dipole moment peff is related to the amount of polar bonding in the
molecule and is given by:

peff m; nð Þ ¼ z∗eð Þr0η m; nð Þ�1 2þ k

3

� �
, ð12:19Þ

where: z* is the effective charge transferred from the silicon-ion to its four oxygen-
ion bonding neighbors [z*¼ 4(0.6)¼ 2.4], ro is the equilibrium bonding distance (r0
¼ 1.7 Å), η is related purely to the bonding parameters in the Mie–Gruneisen
bonding potential [η(9, 1)–1 ¼ 1.67],41 and the dielectric constant for SiO2 is 3.9
[giving (2 + k)/3¼ 1.97]. Thus, for the (9, 1) bonding potential one obtains a value of
peff ¼ 13.4 eÅ. If the bonding is less ionic and more covalent, then η(9, 2)–1 ¼ 0.93
and produces a peff ¼ 7.5 eÅ.

peff is generally found to be from TDDB data in the range of 7–14 eÅ42 for SiO2,
but can be much larger for higher dielectric constant k materials (as indicated by
Eq. (12.19). The 1/T dependence for γ, as given by Eq. (12.18), serves to drive an
observed/effective activation energy that is field dependent. Using Eqs. 5.15, 12.17
and 12.18, one obtains an effective activation energy which reduces linearly with the
electric field,

Qeff ¼ Q� peffEox, ð12:20Þ

where:
Qeff is the effective activation energy (eV) and Q is the activation energy for Si–O

bond breakage in absence of external electric field.
The observed value of γ may not necessarily be temperature dependent if several

types of disturbed bonding states are present and participating in the dielectric
degradation process under high-field and/or high-temperature TDDB testing. Gen-
erally, however, for silica-based dielectrics with thicknesses >40 Å and tested at
105 �C, one generally finds that γ ~ 4.0 cm/MV and Q ~ 1.8 eV are observed during
TDDB testing. Thus, if TDDB testing is done at 10 MV/cm or greater, then
according to Eq. (12.20) the expected activation energy is: Qeff � 1.8 eV �
(13 eÅ) (10 MV/cm) ¼ 0.5 eV. Thus, when TDDB testing is done at fields above

41The values for η(m, n) can be found in Chap. 13.
42This range is consistent with effective dipole moments: peff (9, 2) to peff (9, 1).
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10 MV/cm, the observed activation energy will generally be �0.5 eV. When TDDB
testing is done at fields lower than 10 MV/cm, the observed activation energy is
generally greater �0.5 eV.

5.2 Exponential 1/E-Model

In the 1/E-Model for TDDB (even at low fields) damage is assumed to be due to
current flow through the dielectric due to Fowler–Nordheim (F–N) conduction.
Electrons, which are F–N injected from the cathode into the conduction band of
SiO2, are accelerated toward the anode. As the electrons are accelerated through the
dielectric, because of impact ionization, some damage to the dielectric might be
expected. Also, when these accelerated electrons finally reach the anode, hot holes
can be produced which may tunnel back into the dielectric causing damage (hot-hole
anode-injection model). Since both the electrons (from the cathode) and the hot holes
(from the anode) are the result of F–N conduction, then the time-to-failure is
expected to show an exponential dependence on the reciprocal of the electric field,
1/E,

TF ¼ τ0 Tð Þexp G Tð Þ
Eox

� 	
, ð12:21Þ

where:
τ0 (T ) a temperature-dependent prefactor, and G (T ) is a temperature-dependent

field acceleration parameter for the 1/E-Model.
The temperature dependence of G has been expressed as a 1/T power-series

expansion given by,

G ¼ ∂ ln TFð Þ
∂ 1=Eð Þ

� 	
T

¼ G0 1þ δ

KB

� �
1
T
� 1
300K

� �� 	
, ð12:22Þ

where:

δ ¼ KB

G0

� �
dG

d 1=Tð Þ
� 	

300 K

, ð12:23Þ

and where the derivative is evaluated at 300 K. At room temperature, G0 ~
350 MV/cm and δ ~ 0.017 eV. τ 0 (T ) is usually also represented as 1/T expansion,

τ0 Tð Þ ¼ τ0exp
�Q

KB

� �
1
T
� 1
300K

� �� 	
, ð12:24Þ

where: τ0 ~ 1 � 10–11 s and Q ~ 0.3 eV.
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5.3 Power-Law Voltage V-Model

For SiO2 dielectrics which are hyper-thin (<40 Å), a power-law voltage model has
been proposed for TDDB of the form:

TF ¼ B0 Tð Þ V½ 	�n: ð12:25Þ

As we have discussed before, normally one prefers to use a real stress such as
electric field E (where time-to-failure TF, for a fixed field E, is approximately
independent of the thickness of the dielectric). But, V as used here is a virtual stress
(since time-to-failure TF at a fixed voltage V depends strongly on dielectric thick-
ness). However, the argument has been made that for ballistic transport
(no scattering or energy loss in these hyper-thin dielectric films) the amount of
energy which is actually delivered to the anode is simply (e) � (V). For hyper-thin
oxide films, the observed exponent is generally in the range: n ¼ 40–48. However,
the value of n is observed to be thickness dependent and can be much lower for thick
oxides.

5.4 Exponential
ffiffiffiffi
E

p
-Model

Current-induced dielectric degradation and TF models assume that the degradation is
due to current flow through the dielectric. For high quality SiO2, the dominant
current flow is nearly always Fowler–Nordheim conduction and thus the damage
is assumed to follow a 1/E-Model. However, for other dielectrics, or even poor
quality SiO2 dielectrics (such as low-k interconnect dielectrics), the conduction
mechanism may be Poole–Frenkel or Schottky conduction. Thus, based on
current-induced degradation, one might expect a TF model of the form,

TF ¼ C0 Tð Þexp �α
ffiffiffiffi
E

ph i
, ð12:26Þ

where the root-field acceleration parameter α is given by:

α ¼ � ∂ ln TFð Þ
∂
ffiffiffiffi
E

p
� 	

T

: ð12:27Þ

5.5 Which TDDB Model to Use?

Since the physics of each of the TDDB models seems to be quite different, then it is
only natural to ask the question—which model should one use? That is probably too
difficult of a question to try to answer in this text, because there seems to be no
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universal agreement (the physical arguments for each model seem to be reasonable).
However, one can certainly ask the question—what is the relative ranking of the
models in terms of their conservatism? This question does have an answer and it is
illustrated in Fig. 12.25. When the models are used to fit the same set of accelerated
TDDB data, the E-Model gives a shorter time-to-failure TF, as one extrapolates from
high-field accelerated TDDB conditions to lower-field use conditions. This makes
the E-Model the more conservative model. In terms of relative rank of conservatism:
E-Model is the most conservative, followed by

ffiffiffiffi
E

p
-Model, then the V-Model, and

finally the 1/E-Model.
It should be noted that the E-Model TF, unlike 1/E and V-Models, does not go to

infinity as the field E (or voltage) goes to zero. This is because the poly/oxide/ silicon
capacitor has been fabricated into a very highly-ordered structure which is metasta-
ble, as discussed in Chap. 9. Thus, we expect this metastable state will degrade with
time, even when the electric field (or voltage) is zero. Therefore, the electric field
simply serves to accelerate this natural degradation process. When the electric field
goes to zero, the natural degradation/diffusional-processes still exist which will
degrade the dielectric quality and will eventually cause failure, even though it may
take hundreds or thousands of years in the absence of electric field.
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Fig. 12.25 Shown are the four models best fittings to the same set of accelerated TDDB data. All
the models tend to give a very good fitting to the four accelerated TDDB data points. However, their
extrapolated results to lower electric fields are quite different. The E-Model gives the shortest time-
to-failure when the results are extrapolated to lower electric fields. The 1/E-Model gives the longest
time-to-failure at lower electric fields. One could describe the E-Model as being the most conser-
vative and the 1/E-Model as being the most optimistic in their projections
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Example Problem 7
In a high-reliability application, capacitors were made of a silica-based dielec-
tric of thickness 90 Å. During accelerated testing at 9 V, the dielectrics started
to fail in 5 s at 105 �C. How long would the capacitors be expected to last at
5 V?

Solution
Since this is a high-reliability application, we will use a conservative TDDB
model like the E-Model. In the E-Model, the field acceleration parameter γ is
given by:

γ Tð Þ ¼ peff
KBT

ffi 13 e A
�

8:62� 10�5eV=K
� �

105þ 273ð ÞK � 10�8cm

1 A
�

 !

¼ 4:0� 10�6cm=V ¼ 4:0cm=MV:

The acceleration factor for TDDB (using E-Model) becomes:

AF ¼ TFð Þ5�Vo1ts

TFð Þ9�Vo1ts

¼ exp γ � 9V
tox

� 5V
tox

� �� 	

¼ exp 4� 10�6cm=V
� � � 9V

90� 10�8cm
� 5V

90� 10�8cm

� �� 	

¼ 5:26� 107

Therefore, one would expect that the capacitors would last at 105 �C for:

TFð Þ5�volts ¼ AF � TFð Þ9�volts ¼ 5:26� 107
� � � 5sð Þ ¼ 2:63� 108s

¼ 2:63� 108s
� � � 1h

3, 600 s

� �
1

8, 760 h

� �
¼ 8:3 years:

Example Problem 8
For the capacitors in Example Problem 7, what is the maximum design voltage
which should be used for these capacitors, if one wants them to last at least
15 years at 105 �C?

Solution
The caps lasted 5 s at 9 V, but we need them to last a minimum of 15 yrs. Thus,
we need an acceleration factor of at least:

(continued)
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AFð Þneeded ¼
15 years

5s

� �
3, 600s
1 h

� �
8, 760 h
1 year

� �
¼ 9:46� 107

However, the acceleration factor is also given by:

AFð Þ ¼ TFð ÞV�design

TFð Þ9�vo1ts

� �
¼ exp γ � 9V

tox
� Vdesign

tox

� �� 	
,

Solving for Vdesign one obtains:

Vdesign ¼ 9V� tox
γ
ln AFð Þ

¼ 9V� 90� 10�8cm

4� 10�6cm=V
ln 9:46� 107
� �

¼ 4:87 V:

Therefore, to last at least 15 years at 105 �C, the maximum design voltage
for this 90 Å silica-based dielectric is �4.87 V.

5.6 Complementary Electric Field and Current-Based Models

There have been several attempts to include both field-induced degradation and
current-induced degradation into a single TDDBmodel with some degree of success.
These modeling efforts permit both field-induced and current-induced dielectric
degradation mechanisms to occur simultaneously, in parallel fashion, during the
TDDB testing. If it is assumed that the root cause of TDDB is bond-breakage/trap-
creation, then let us look at the bond-breakage rate equation,

dN
dT

¼ �kN tð Þ, ð12:28Þ

where N is the number of Si–O bonds in the region of interest and k is the bond-
breakage rate constant. Separating variables in the above equation and integrating,
one obtains:

ðNcrit

N0

dN
N

¼ �k

ðTF
0

dt, ð12:29Þ
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giving,

TF ¼ ln 1=f critð Þ
k

, ð12:30Þ

where fcrit ¼ (N/N0)crit is the critical fraction of bonds that must be broken to produce
failure. It is believed that only a relatively few of the total number of bonds must be
broken to cause TDDB, thus fcrit is expected to be only slightly less than one.

Now let us assume that the total reaction rate constant k is the sum of two
independent bond-breakage mechanisms: k ¼ k1 + k2. The total reaction rate
becomes:

k ¼ k1 þ k2 ¼ ln 1=f critð Þ 1
TFð Þ1

þ 1
TFð Þ2

� 	

¼ ln 1=f critð Þ TFð Þ1 þ TFð Þ2
TFð Þ1 TFð Þ1

� 	
:

ð12:31Þ

Combining Eqs. (12.30) and (12.31), one obtains:

TF ¼ TFð Þ1 TFð Þ2
TFð Þ1 þ TFð Þ2

ð12:32Þ

The above TF equation is valid for degradation mechanisms that are acting indepen-
dently, but acting concurrently.One can see that if (TF)1 ismuch greater than (TF)2, then
the time-to-failure TF is completely dominated by (TF)2, and vice versa.

As for TDDB, let us assume that above E ¼ 10 MV/cm the current-based 1/E-
Model physics (hole-catalyzed bond-breakage mechanism) could be dominating the
TDDB physics. Below E ¼ 10 MV/cm, where anode hole-injection is relatively
small, the field-based E-Model physics (thermal breakage of field-stretched bonds)
could be dominating. Thus, a single time-to-failure equation (combining the physics
of both the E-Model and 1/E-Model) would take the form:

TF ¼ TFð ÞE�Mode1 TFð Þ1=E�Mode1

TFð ÞE�Mode1 þ TFð Þ1=E�Mode1

: ð12:33Þ

Shown in Fig. 12.26 is a single time-to-failure TF model, when both the field-
based E-Model and the current-based 1/E-Model are combined into a single model.

Current-induced hole capture could serve to catalyze the bond-breakage pro-
cess,43 thus playing an important role in TDDB. Hole capture can lead to a very
strong Si–Obond suddenly becoming amuchweaker bond. This weakened bond is now
amenable to field-enhanced thermal breakage. Also, a hydrogen-release model has been

43Remember that a hole is simply a missing bonding electron. Hole capture thus eliminates one of
the two electrons in the S–O bond. Therefore, hole capture serves to weaken the bond. Furthermore,
the hole (if hot) can also bring energy to the bond to help in the bond-breakage process.
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proposed to better explain the power-lawV-Model (with an exponent of n ~ 40) used for
time-to-failure. Both the hole-injection and the hydrogen-releasemodels are expected to
show a polarity dependence which is widely reported for hyper-thin(� 4.0 nm) gate
oxides. Also, the adverse effects of hydrogen on TDDB have been studied.

In summary, there has been great disagreement in the technical community as to
the dominant degradation mechanism for low-field TDDB in SiO2 thin films, i.e., is
the major degradation mechanism related to current or field? Certainly hole capture
and hydrogen release are relevant mechanisms and must be folded into any TDDB
discussion. While the E-Model has been widely used and has been quite successful
in describing low-field TDDB data for thick films >4.0 nm; however, for very thin
oxides (<4.0 nm), the direct-tunneling current (ballistic transport) can be very high in
these films and could mean that the degradation mechanism in hyper-thin oxide films
is more controlled by current than field. In any case, as illustrated in Fig. 12.25, the
E-Model is generally accepted as being the most conservative of the TDDB Models.
The next most conservative model would be a complementary combination of the
TDDB models, using the approach that was described by Eqs. (12.32) and (12.33)
and as illustrated in Fig. 12.26.

Also, TDDB should not be considered just a MOSFET gate oxide or capacitor-
oxide issue. The issue of TDDB has also been raised for interconnects (metallization
plus surrounding/supporting dielectrics) with the introduction of low-k dielectrics.
TDDB data for interconnect dielectrics is normally taken using comb–comb or
comb–serpent type test structures as illustrated in Fig. 12.27. While silica-based
low-k dielectric materials enable significant performance gains at the interconnect
level in terms of circuit delay reduction, they also possess substantially inferior
electrical properties relative to gate oxide dielectric quality in terms of leakage and
breakdown strength.
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Fig. 12.26 E and 1/E-Models are combined into a single time-to-failure model. It is believed that
current-induced degradation may dominate at very high fields (E > 10 MV/cm), while field-induced
degradation may dominate at lower fields (E < 10 MV/cm)

5 Time-Dependent Dielectric Breakdown 203



Presently, minimum intra-metal spacing between adjacent interconnect stripes is
approaching the physical dimensions of gate oxides (<100 nm) used a couple of
decades ago. Hence, a discussion of which TDDB model to use is also pertinent to
low-k dielectrics as well. Oxide-based low-k dielectrics have been shown to have
inferior breakdown strength and significantly wider failure distributions under con-
stant voltage stress. This is attributed to the presence of pre-existing defects in the
low-k dielectrics that scale roughly with the degree of porosity present within the
low-k. Yet, as illustrated in Fig. 12.28, these low-k TDDB results indicate that the
field acceleration parameter γ is similar for all of these silica-based materials: a field
acceleration parameter of γ ~ 4 cm/MV at 105 �C (giving an effective dipole moment
peff ~ 13 eÅ).

A pore in the context of low-k porosity is defined as a localized region in the
dielectric of low-polarizability. In this pore region weak bonds can exist and these

Fig. 12.28 TDDB data for
various silica-based
dielectrics at 105 �C. The
lower-k materials MSQ (k ¼
2.3), OSG [SiCOH(k ¼
2.9)], and FSG [SiOF(k ¼
3.5)] generally have lower
breakdown strength and
time to failure. However, all
of these silica-based
materials have a very similar
E-Model field acceleration
parameter of γ 
 4 cm/MV
(or a peff 
 13 eÅ)

Serpent

Line-width

Line-to-Line
Spacing,

Upper
Comb

Lower
Comb

Fig. 12.27 Typical
interconnect-dielectric test
structure is illustrated.
Shown is a comb-serpent
type test structure with
minimum pitch (minimum
line-width plus minimum
space). A simple breakdown
strength measurement, or
TDDB data, can be an
indication of interconnect
dielectric goodness
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can serve as charge traps. Percolation theory, along with the assumption of
preexisting electrically active defects that scale with the degree of porosity, has
been used to explain both the degraded breakdown strength and wider failure
distributions with low-k dielectrics. Thus, the TDDB of the low-k materials should
be assessed when using these low-k materials in an advanced integration scheme.
Also, the contact to gate edge spacing is presently only a few hundred Angstroms,
similar to gate oxide thickness just a couple of decades ago. Thus, gate-to-contact
TDDB should be considered.

6 Mobile-Ions/Surface-Inversion

Alkaline-metal elements such as Li, Na, and K can sometimes be found in the
semiconductor processing materials. In SiO2, these ions are very mobile under the
presence of modest electric fields (~0.5 MV/cm) and temperatures (100 �C). An
accumulation of the drifted ions at the Si/SiO2 interface (see Fig. 12.29) can cause
surface inversion and can lead to increased leakage for isolation-type devices in
silicon and eventual device failure.

Sodium and potassium (and perhaps lithium) are the usual mobile-ion suspects,
simply because of their high mobility and their relative abundance in some materials.
Under bias, they can drift from the poly (anode) to the silicon substrate (cathode). A
buildup of positive ions at the Si/SiO2 interface can invert the surface and severely
degrade the oxide isolation. Ionic drift in SiO2 gate dielectric can also cause
premature TDDB. In the case of EPROMs44/EEPROMs45/Flash-Memories,46

Fig. 12.29 If any mobile ions are in the dielectric, they can drift in the oxide isolation due to the
presence of an electric field. Such mobile-ion drift can cause surface inversion in the P-well region.
Surface inversion can result in a leakage-path creation from N-well to the adjacent n+ moat

44EPROM is an erasable programmable read-only memory.
45EEPROM is an electrically erasable programmable read-only memory.
46Flash Memories are block-erasable EEPROMs.
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mobile-ion accumulation around the negatively charged floating poly-gate can lead
to data-retention fails.

Devices showing inversion-induced leakage failures can often recover during an
unbiased high-temperature bake. The bake causes a redistribution of the mobile ions
from the accumulated Si/SiO2 interface (or away from the floating poly in the case of
an EPROM-like devices) and can bring about device recovery.

Since the mobile-ion flux is impacted by both electric field and temperature, the
TF is usually described by

TF ¼ A0J
�1
ionexp

Q

KBT

� �
, ð12:34Þ

where:

J ion ¼ D0

KBT

� �
ρ eE tð Þ½ 	 � D0

∂ρ x; tð Þ
∂x


 �
, ð12:35Þ

and where Jion is the time-averaged flux of mobile ions. The first term on the right-
hand side of Eq. (12.35) is the drift component, with E the externally applied electric
field, D0 ¼ diffusion coefficient and ρ ¼ density of mobile ions. The second term is
the back-diffusion component, and the brackets hi represent the time-averaged value
of the time-dependent quantities enclosed. Note that if the field is turned off and the
device is baked (an unbiased bake), the mobile ions will diffuse away from the
interface and the device can recover. This is generally referred to as a bake-recovery
failure mechanism. The activation energy Q depends upon the IC medium through
which the ions must diffuse. For Na diffusion through silica-based dielectrics,
device-failures tend to have an activation energy range from 0.75 to 1.8 eV, with
1.0 eV being typically used in modeling.

It is interesting to note that Cu-ions can be mobile in silica-based dielectrics, thus
free Cu-ions under electrical bias are also a concern for interconnects. The loss of
barrier integrity or the presence of Cu-related corrosion defects will lead to substan-
tially degraded back-end dielectric reliability performance. Since many interfaces
exist with Cu interconnect technology, relatively fast diffusion pathways always
seemed to be available for any free Cu-ions. Since such defects are difficult to
observe under use conditions, their statistical presence must be determined using
accelerated test conditions and rapid tests such as ramped-breakdown testing.47

Usually, Cu-ion drift under an electric field is more of an interconnect TDDB
issue than a surface-inversion issue.

In summary, the activation energy for ion diffusion depends on: the diffusing
species, medium through which the mobile ions diffuse, and the concentration of the

47Ramped-to-breakdown testing was extensively discussed in Chap. 11. The ramp-to-breakdown
test can be a very important test for interconnect dielectric reliability. Both intrinsic issues (low-k
integrity) and extrinsic issues (metal/dielectric defects) can be found in a ramp-to-breakdown test at
elevated temperature.
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ions. If the mobile-ion concentration is relatively low, and if deep interfacial traps
exist, then one may see interfacial deep-traps that dominate with higher activation
energy (~1.8 eV) for Na+ diffusion noted. However, if the concentration of Na+ is
relatively high, such that all deep interfacial traps are filled, leaving residual mobile
Na+ ions to freely diffuse, then one may see lower activation energy (Q ~ 0.75 eV).

7 Hot-Carrier Injection

Channel HCI describes the phenomena by which electrons (or holes) can gain
sufficient kinetic energy, as they are accelerated along the channel of a MOSFET
(see Fig. 12.30), such that they can be injected over either the 3.1 eV barrier (for
electrons) or 4.7 eV barrier (for holes) that exists at the Si/SiO2 interface. The
channel electrons, as they are accelerated from source to drain can acquire the
needed energy for injection into the SiO2, especially those lucky electrons48 located
near the tail of the Boltzmann distribution. These lucky electrons (or hot carriers)49

are redirected toward the gate oxide as a result of impact ionization near the drain
end of the MOSFET device where the channel electric field is the greatest. HCI
serves to produce damage at the interface (interface-state generation).

Interface-state generation and charge trapping by this HCI mechanism can result
in transistor parameter degradation. This is an important degradation mechanism,

Fig. 12.30 Carriers traveling along N-MOSFET channel are accelerated from source to drain.
These accelerated electrons reach kinetic energies well above their normal thermal energy [(3/2)
KBT] and, as such, are referred to as hot carriers. Hot carriers can produce impact ionization near the
drain end (where the electric field along the channel is greatest) causing some of the carriers to be
redirected toward the gate oxide. These redirected (and energetic) electrons can interact with the
normal bonding at the Si/SiO2 interface and produce damage (create new interface states or fill
existing ones). Interface-state generation usually results in device degradation (changes in critically
important device parameters, e.g., Vt, gm, Idrive, etc.)

48Lucky electron means that it obtains the maximum possible kinetic energy.
49These energetic electrons are referred to as hot, because their kinetic energy is greater than the
average thermal energy (3/2)KBT.
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especially for advanced technologies where the channel electric fields (which accel-
erate the carriers) have increased faster than the reductions in operating voltage.
Thus, HCI can be an important MOSFET degradation mechanism. Since the
MOSFET is a field-effect device, the interface between the silicon substrate and
the SiO2 gate dielectric is critically important. Usually, device instabilities come
about due to degradation (bond-breakage) at this interface. For this reason, a closer
look at this interface is illustrated in Fig. 12.31.

Silicon atoms in the silicon substrate are four-fold bonded in a crystalline lattice.
The SiO2 layer is amorphous with the silicon four-fold bonded to the neighboring
oxygen (in a tetrahedral arrangement). The oxygen at the corners of each tetrahedron
is two-fold bonded to neighboring silicon atoms. Due to the mismatch in lattice
structure at the interface, not all silicon bonds will be satisfied (creating a silicon
dangling bond). Hydrogen is usually introduced during MOSFET fabrication, in
order to chemically tie-up/terminate these dangling bonds and to prevent them from
being electrically active. The impact of Si–O and Si–H bond breakage, and its impact
on TDDB was discussed in Section 5. In this section and the next, we will focus on
the impact that bond breakage at the Si/SiO2 interface can have on MOSFET device
stability.

Initially, after SiO2 growth, there are likely to be at least some broken bonds, or at
least some very weak Si–O bonds, in the bulk of the SiO2 and at the Si/SiO2

interface. Depending on the location of the Fermi Level (Chemical Potential),
these dangling bonds50 can serve as electron traps, hole traps, or remain neutral. If

Fig. 12.31 Interface between the silicon substrate and the SiO2 gate dielectric is illustrated. Silicon
atoms in the silicon substrate are four-fold bonded in a crystalline lattice. The SiO2 layer is
amorphous with the silicon four-fold bonded to neighboring oxygen (in a tetrahedral arrangement).
The oxygen at the corners of each tetrahedron are two-fold bonded to neighboring silicon. Due to
lattice mismatch at the interface, not all silicon bonds will be satisfied (creating dangling silicon
bonds). Hydrogen is usually introduced during MOSFET fabrication, to chemically tie-up/terminate
these dangling bonds and prevent them from being electrically active

50Normally, each Si–O bond has two electrons in it which are being shared. If the bond is broken
(thus forming a dangling bond), depending on the chemical potential (Fermi-level), a dangling bond
can be neutral (retains a single electron), can become negative with the trapping of a second
electron, or can give up its single electron (hole trap) and become positively charged.
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these dangling bonds charge during operation, then the MOSFET operational
parameters can degrade. Interface stability can be extremely important for reliable
MOSFET operation. If device operation serves to break the Si–H bonds at the
interface, then the exposed Si-dangling bond may charge and degrade MOSFET
operational parameters. Thus, the interface must remain relatively stable for the
MOSFET device to be stable.

As discussed in Chap. 3 (Sec. 2), device-parameter degradation (induced by HCI)
can be described by

ΔP ¼ B0t
m: ð12:36Þ

where:
P is the parameter of interest (Vt, gm, Idsat, etc.),
t is the time,
B0 is a material/device-dependent parameter, and m(’0.5) is the power-law

exponent for the HCI time dependence.
As illustrated in Fig. 12.32 for N-channel MOSFETs, when the hot electron

undergoes impact ionization near the drain end of the device, holes are produced
during the impact collision event which can be collected as substrate current Isub.
While it is gate current that produces the transistor damage, the substrate current
measurement is generally easier. Therefore, even though the substrate current is a
pseudo stress, it is a good proxy for the actual stress (gate current).

The peak Isub current thus becomes an easy-to-measure indicator of the material/
device stress that will be occurring during the channel hot-carrier testing. The time-
to-failure expression that is generally used for N-channel transistors is

TF ¼ A0
Isub
w

� ��n

exp
Q

KBT

� �
, ð12:37Þ

Isub

Poly or Metal Gate

VGS
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VDS
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Fig. 12.32 As electrons are accelerated from source to drain, impact ionization at the drain end of
the MOSFET can produce electron–hole pairs. Some of these energetic electrons will be redirected
toward the Si/SiO2 interface. These energetic electrons are capable of producing interface damage in
a localized region near the drain end. The holes (since they are majority carriers) are easily collected
as substrate current. The substrate current is an indirect indicator of the HCI-induced damage

7 Hot-Carrier Injection 209



where:
Isub is the peak substrate current

51 during stressing,
w is the width of the transistor,
n is the power-law exponent, approximately equal to 3, and
Q is the activation energy and is approximately -0.25 to +0.25 eV depending on

channel length.
A0 is a device-dependent parameter, which will vary from device to device and

will produce a distribution of times-to-failure.
The peak substrate current Isub has been divided by the transistor width w in an

effort to make Isub/w a true stress (a stress that is roughly independent of the device
width, as discussed in Chap. 9, Sec. 4). The activation energy for HCI is small, and
can be positive or negative depending on channel length. The positive values for
activation energy are generally observed only for gate lengths <0.25 μm.

Example Problem 9
To better understand the hot-carrier injection lifetime of an n-type MOSFET, a
device was stressed for 1 h at 7.5 V and a 10 % reduction in drive current was
recorded. It was also recorded that the peak substrate current was 30 times
higher at 7.5 V vs. the expected 5.0 V operation. How long would it take to see
a 10 % reduction in drive current at the expected operation of 5.0 V?

Solution
Using Eq. (12.37), the acceleration factor becomes:

AF ¼ Isub@7:5Vð Þ
Isub@5:0V

� 	3
¼ 30

1

� 	3
¼ 2:7� 104:

Therefore, the time-to-fail at 5.0 V vs. 7.5 V becomes:

TF@50V ¼AF � TF@75V

2:7� 104
� � � 1 h

¼ 2:7� 104h
1 year
8, 760 h

� �
¼ 3:1 years:

51The gate voltage (Vgs) conditions must be determined that produce the maximum substrate
current, for a fixed drain-to-source voltage Vds. For an n-type MOSFET, this could be Vgs ¼ (1/2)
Vds for n-type MOSFETs with longer channel lengths (>0.25 μm) but could be Vgs¼ Vds for devices
with shorter channel lengths. In any case, the voltage conditions which produce the maximum
substrate current must be established for the full range of expected device operation.
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Historically, HCI for P-channel devices has been of lesser concern. This is
generally true because of lower hole-mobility and the increase in barrier height for
hole-injection. For P-channel devices, sometimes the gate current Igate is the better
indicator of the actual stress on the device. Thus, for P-channel devices the time-to-
failure equation for HCI is usually written

TF ¼ A0
Igate
w

� ��n

Exp
Q

KBT

� �
, ð12:38Þ

where:
Igate is the peak gate current during stressing,
w is the width of the transistor,
n is the power-law exponent and is generally from 2 to 4, and
Q is the activation energy, generally from -0.25 eV to +0.25 eV.

In summary, HCI-induced transistor degradation seems to be satisfactorily
modeled by using peak substrate current Isub for the N-channels and peak gate
current Igate for the P-channels, at least for transistors at >0.25 μm. The drive current
for the N-channel device tends to reduce after HCI stressing (i.e., HCI stressing tends
to produce charge trapping such that it serves to increase the effective channel length
for the N-channel device). The P-channel drive current tends to increase after HCI
stress (i.e., HCI stressing tends to produce charge trapping such that the degradation
serves to effectively shorten the channel length for the P-channel devices) and the
off-state leakage can increase significantly.

While HCI-induced transistor degradation measurements and modeling seem to
be quite accurate, the extrapolation from transistor degradation to circuit-level
degradation is often difficult and makes IC time-to-failure predictions difficult.
First, one must consider the actual fraction-of-time (duty cycle) that a transistor in
an IC actually experiences the maximum/peak substrate current (or maximum gate
current) conditions. For fast switching transistors, this can be less than 10 % of the
time. Second, how much transistor degradation (5, 10, 20 %, or ?) can the circuit
tolerate before some critical circuit parameter (speed, power, leakage, etc.) starts to
shift?

For the reasons listed above, sometimes it is easier and more precise to simply
take an empirical approach to establishing the HCI impact at the circuit level. In this
empirical approach, one takes a sampling of the ICs and puts the sample on
operational life test at an elevated voltage level (higher than expected operating
voltage). The circuit-level degradation can then be recorded as a function of stress
time. Using the acceleration factor, which is easily extracted from the above models,
one can then find out how the circuit will be expected to degrade during normal
operation.
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8 Negative-Bias Temperature Instability

For a MOSFET device, as illustrated in Fig. 12.30, the stability of the Si/SiO2

interface is of great importance. If the Si–H bonds at this interface become broken
during device operation, as shown in Fig. 12.33, then the device properties will
degrade and device failure can eventually occur.

In Fig. 12.33, the Si/SiO2 interface is illustrated between the silicon substrate and
the gate dielectric. Since the P-type MOSFET operates with a negative gate voltage,
the electric field in the SiO2 layer is directed away from the interface. If a Si–H bond
is broken during device operation thus freeing an H+ ion, the drift direction is away
from the Si/SiO2 interface. This illustrates why negative-bias temperature instability
for P-channel MOSFET is usually more of an issue than the sister problem of
positive-bias temperature instability (PBTI) associated with an N-type MOSFET.
However, PBTI can still be an issue when the dielectric is something other than
SiO2, e.g., high-k gate dielectrics.

The bond-breakage mechanism is thought to be a result of hole capture by the
Si–H bond during device operation. A possible degradation reaction is given by:

Si� Hþ holeð Þþ ! Si�þ Hþ, ð12:39Þ

where Si–H represents a normal silicon–hydrogen bond, Si—represents a silicon
dangling bond, and H+ represents a freed hydrogen ion (proton). Due to the electric
field which is present, refer to Fig. 12.33, any hydrogen ions H+ generated (due to the
above reaction) will tend to drift away from the Si/SiO2 interface and into the bulk of
the SiO2. Recall from Chap. 5, once the H+ ions are generated, one would expect the
ions to drift away from the interface governed by the transport equation:

J x; tð Þ ¼ μρ x; tð Þ qEð Þ � D
∂ρ x; tð Þ

∂x
, ð12:40Þ

Fig. 12.33 Interface (Si/SiO2) for a P-type MOSFET is illustrated. Since the P-type MOSFET
operates with a negative gate voltage, the electric field in the SiO2 layer is directed away from the
interface. If a Si–H bond is broken during device operation, thus freeing an H+ ion, the drift
direction is away from the Si/SiO2 interface
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where ρ(x, t) is the density of H+ ions at a distance x from the interface at any time t,
|e| E is the force action on the H+ ion, D is the diffusivity of the H+ ion, and μ is the
mobility of the H+ ion and is related to the diffusivity through the Einstein relation:

μ ¼ D

KBT
¼

D0exp � Q

KBT

� �
KBT

: ð12:41Þ

One can see from Eq. (12.40), as the H+ ions tend to drift away from the interface
due to the presence of the electric field E, the concentration of H+ ions in the SiO2

starts to increase. As the concentration of H+ ions grows in the SiO2 dielectric, a
backflow of H+ ions (toward the interface) can be expected to develop. In fact, if the
stress stops (electric field goes to zero), then the backflow of H+ ions is expected to
occur causing some device recovery to take place. Complete recovery does not
generally take place because some of the H+ ions may undergo a reduction reaction
while in the SiO2 gate dielectric.

52 Several reduction reactions are possible:

Hþ þ e ! H, ð12:42aÞ

or

Hþ þ Hþ e ! H2, ð12:42bÞ

or

Hþ þ Hþ þ 2e ! H2: ð12:42cÞ

The electrical impact of NBTI on p-MOSFET device characteristics is substan-
tial: a shift can occur in the threshold voltage of the device and a decrease in hole
mobility in the inversion channel. Both the Vt shift and mobility degradation lead to
reduced current in the channel (Idrive) of the device and, as a consequence, degraded
device performance. The threshold voltage Vt shift with time is observed to take the
form:

ΔVt

Vtð Þ0
¼ B0 E; Tð Þ tð Þm, ð12:43Þ

where B0(E, T ) is a prefactor that is electric field E and temperature T dependent.m is
the power-law exponent for the time t. Generally, m ¼ 0.15–0.35, with m ¼ 0.25
often observed.

52It is also possible that some of the H+ ions may be reduced and dispersed within the poly-gate
electrode and/or diffuse laterally from the gate region.
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Since the time-dependence exponent m is less than 1, then we know from Chap. 3
that the degradation with time will tend to saturate. Such degradation saturation is
fully expected from the reaction–diffusion model illustrated in Fig. 12.33. Since the
number of S–H bonds is finite, then the degradation rate due to Si–H bond breakage
must reduce as the number of unbroken Si–H bonds dwindles with time.

Example Problem 10
During a NBTI stress test of a P-channel MOSFET, it was determined that the
Vt shifted by 10 % in 100 h. How long would it take the Vt to shift by 20 %?
Assume a time-dependence exponent of m ¼ 0.25.

Solution
Given the 10 % degradation in 100 h, one can determine B0 for the set of stress
conditions using Eq. (12.43):

0:1 ¼ B0 100 hð Þ0:25,

giving: B0 ¼ 0.0316/(h)1/4. Solving Eq. (12.43) for time t, one obtains:

t ¼ 1
B0

ΔVt

Vtð Þ0

� �� 	1=m
,

giving

t ¼ 1

0:0316= hð Þ1=4
0:2ð Þ

" #4
¼ 1, 605 h:

Note that, because NBTI is a saturating degradation mechanism, it took
only 100 h to reach a 10 % degradation level for the device, but it took more
than 1,600 h to reach a 20 % degradation level. The full plot is shown
(Fig. 12.34).

The field E and temperature T dependence of the prefactor B0(E, T ) takes the
familiar form:

B0 E; Tð Þ ¼ C0exp γdegradation � E
� �

exp �Qdegradation

KBT

� 	
, ð12:44Þ

where C0 is proportional to the concentration of Si–H bonds at the Si/SiO2

interface.
Time-to-failure TF for the device will occur at a time when the parameter

degradation reaches some critical amount [(ΔVt)/(Vt)0]crit. Solving Eq. (12.43) for
t ¼ TF, one obtains
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TF ¼ 1
B0

ΔVt

Vtð Þ0

� �
crit

� 	1=m
: ð12:45Þ

Using Eqs. (12.44) and (12.45), one obtains

TF ¼ A0exp �γNBTI � E½ 	exp QNBTI

KBT

� 	
, ð12:46Þ

where:

A0 ¼ 1
C0

ΔVt

Vtð Þ0

� �
crit

� 	1=m
ð12:47Þ

γNBTI ¼
γdegradation

m
, ð12:48Þ

and

QNBTI ¼
Qdegradation

m
: ð12:49Þ

One can see from Eq. (12.46) and Eq. (12.47) that the time-to-failure prefactor A0

is dependent on the amount of parameter degradation that can be tolerated and
inversely dependent on the concentration C0 of Si–H bonds at the Si/SiO2 interface.
It is not surprising that as C0 goes to zero, the time-to-failure for the NBTI failure
mechanism goes to infinity. One should also note that, just as Chap. 4 (Sect. 3.2)

0
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Fig. 12.34 NBTI
degradation shows
saturation effects for longer
times. Time-to-degrade to
10 % was 100 h while the
time- to-degrade to 20 %
was over 1,600 h
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discussed, the time-to-failure kinetics (γNBTI, QNBTI) are not the same as the degra-
dation kinetics (γdegradation, Qdegradation).

53 Accelerated NBTI degradation data sug-
gests that the time exponent for degradation is m¼ 0.25 and the degradation kinetics
are given by: (γdegradation ¼ 0.8 cm/MV, Qdegradation ¼ 0.15 eV). Thus, the time-to-
failure kinetics, as given by Eqs. (12.48) and (12.49), are expected to be four times
greater or: (γNBTI ¼ 3.2 cm/MV, QNBTI ¼ 0.6 eV).

Example Problem 11
NBTI accelerated data was taken on a P-channel MOSFET device with a gate
oxide thickness of tox ¼ 35 Å. At 3.0 V and 150 �C, the time-to-failure (based
on a 10 % Vt shift) was recorded to be 1 h. How long would a similar device be
expected to last at the operating conditions of 1.8 V and 105 �C? Assume an
exponential field acceleration parameter: γNBTI ¼ 3.2 cm/MV.

Solution
Acceleration factor due to voltage:

AFvoltage ¼ exp γNBTI �
V stress � Vop

tox

� �� 	

¼ exp 3:2� 10�6cm=V
� � � 3:0V� 1:8V

35:0� 10�8cm

� �� 	

¼ 5:82� 104:

Acceleration factor due to temperature:

AFtemp ¼ exp
QNBTI

KB

� �
1
Top

� 1
T stress

� �� 	

¼ exp
0:6eV

8:62� 10�5eV=K

� �
1

105þ 273ð ÞK� 1
150þ 273ð ÞK

� �� 	

¼ 7:10:

Total acceleration factor:

AF ¼ AFvoltage � AFtemp ¼ 5:82� 104
� � � 7:10ð Þ ¼ 4:13� 105:

(continued)

53Note that for the case m ¼ 0.25, the time-to-failure kinetics are four times greater than the
degradation kinetics!
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Therefore, the expected time-to-failure at use conditions is:

TF 1:8V; 105oCð Þ ¼ AF � TF 3:0V; 105oCð Þ
¼ 4:13� 105
� � � 1 hð Þ

¼ 4:13� 105h
1 year
8, 760h

� �
¼ 47 years:

Problems

1. Electromigration data was taken, for an Al–Cu alloy, using metal stripes much
greater than the Blech length and with a width ~2 � the average metal grain
size. At a current density of J ¼ 2.5 � 106 A/cm2 and temperature T ¼ 175 �C,
the median time-to-failure was t50¼ 320 h with a logarithmic standard deviation
of σ ¼ 0.5. Assuming an activation energy of Q ¼ 0.8 eV and a current density
exponent of n ¼ 2, find the maximum design current density that can be used to
have no more than 0.13 % cumulative failures in 10 years at a metal temperature
of 105 �C.

Answer: Jdesign ¼ 4.9 � 105 A/cm2

2. Electromigration data was taken, for dual-damascene Cu leads, using a via-fed
Cu-stripe of minimum width and a length much longer than the Blech length. At
a current density of 1.0 � 106 A/cm2 and temperature T ¼ 275 �C, the median
time-to-failure was t50 ¼ 31 h and with a logarithmic standard deviation of σ ¼
0.4. Assuming an activation energy of Q ¼ 1.0 eV and a current density
exponent of n ¼ 1, find the maximum design current density that can be used
in order to have no more than 0.13 % cumulative failures in 10 years at 105 �C
metal temp.

Answer: Jdesign ¼ 1.5 � 106 A/cm2

3. In electromigration testing of an aluminum-alloy at 2� 106 A/cm2, it was found
that the time-to-failure was 2 times longer for 66 μm-long metal
leads vs. 132 μm-long metal leads. Determine the critical Blech constant ABlech

¼ (J � L )critfor this Al-alloy metal system.

Answer: ABlech ¼ 6,000 A/cm

4. In electromigration testing of copper at 1 � 106 A/cm2 it was found that the
time-to-failure was 2 times longer for 30 μm-long metal leads vs. 60 μm-long
metal leads. Determine the critical Blech constant ABlech ¼ (J � L )crit for this
Cu-metal system.

Answer: ABlech ¼ 2,000 A/cm
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5. During stress migration testing of Cu interconnects, it was found that a certain
via would fail in 450 h when a chip was baked at 190 �C. Assuming a power-law
stress-migration exponent of n ¼ 3, activation energy for diffusion of Q ¼ 0.75
eV, and a stress-free temperature of To ¼ 270 �C:

(a) Find the time-to-failure at 105 �C.
(b) What is the effective activation energy for the stress migration from

190 �C vs. 105 �C?

Answers: a) TF@105c ¼ 3,600 h b) Qeff ¼ 0.37 eV

6. During 85 %RH and 85 �C testing of plastic-packaged silicon chips, aluminum
metallization failures due to corrosion started to occur at 750 h of testing.
Assuming an exponential humidity dependence of a ¼ 0.12 %RH and activa-
tion energy of 0.75 eV, find the expected time-to-failure at 40 %RH and 50 �C.

Answer: TF ¼ 264 years

7. The corrosion-free time window, for post chemical–mechanical polishing of
Cu, was determined to be 3 h when the wafers are stored in 40 %RH ambient at
room temp. How long would the corrosion-free window be if the humidity is
lowered to 30 % RH? Assume an exponential humidity dependence with a ¼
0.12 %RH.

Answer: 10 h

8. Thermal cycling of plastic-packaged silicon chips produced solder-ball failures
after 500 cycles of -65 �C/150 �C. Assuming that the elastic range is negligibly
small and that the temperature cycling exponent for the soft-solder metal is
q¼ 3, estimate the number of cycles-to-failure for temperature cycling from 0 to
85 �C.

Answer: 8,100 cycles

9. Thermal cycling of plastic-packaged silicon chips produced crack propagation
in the silicon substrate and caused a fractured-die failure mechanism after
500 cycles of -65 �C/150 �C. Assuming that time-zero cracks exist and that
the temperature cycling exponent for hard/brittle silicon substrate is q ¼ 6, esti-
mate the number of cycles-to-failure for temperature cycling from 0 to 85 �C.

Answer: 1.31 � 105 cycles

10. TDDB data was taken for capacitors at E ¼ 10 MV/cm and a temperature of
105 �C. The following Weibull results were obtained: t63 ¼ 200 s and β ¼ 1.4.
Using an E-Model with γ@105C ¼ 4.0 cm/MV:

(a) What is the expected time-to-failure, at 10 MV/cm and 105 �C, for 0.1 % of
the capacitors?

(b) What acceleration factor is needed to insure that no more than 0.1 % of the
capacitor will fail during 10 years of use at 105 �C?
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(c) What is the maximum allowed operational electric field Eop to ensure that no
more than 0.1 % of the capacitors are expected to fail in 10 years of service
at 105 �C?

Answers: a) t0.1 % ¼ 1.44 s b) AF ¼ 2.19 � 108 c) Eop ¼ 5.2 MV/cm

11. TDDB data was taken for capacitors at E ¼ 10 MV/cm and a temperature of
105 �C. The following Weibull results were obtained: t63 ¼ 200 s and β ¼ 1.4.
Using a 1/E-Model with G@105C ¼ 303 MV/cm:

(a) What is the expected time-to-failure, at 10 MV/cm and 105 �C, for 0.1 % of
the capacitors?

(b) What acceleration factor is needed to insure that no more than 0.1 % of the
capacitor will fail during 10 years of use at 105 �C?

(c) What is the maximum allowed operational electric field Eop to ensure that no
more than 0.1 % cap-fails will occur during 10 years at 105 �C?

Answers: a) t0.1% ¼ 1.44 s b) AF ¼ 2.19 � 108 c) Eop ¼ 6.12 MV/cm

12. Linear ramp-to-breakdown testing at 105 �C of a random collection of capaci-
tors with a ramp rate of 1 MV/cm/s produced a breakdown distribution which
could be described by a Weibull distribution with (Ebd)63 ¼ 12 MV/cm and a
Weibull slope of β ¼ 15.0. Using an E-Model, with γ@105C¼ 4.0 cm/ MV, what
is the expected fraction of capacitors that will fail in 10 years at 4 MV/cm at
105 �C.

Answer: 1.8 %

13. Na ions are present in a group of MOSFET devices. If the devices start to fail in
400 h at 125 �C and 5.0 V, what is the expected time-to-failure at 85 �C and 3.3
V? Assume activation energy of 1.0 eV.

Answer: 1.8 years

14. Minimum channel length MOSFETS were HCI tested. The maximum substrate
current was found to approximately double for each 0.5 V increase in opera-
tional voltage. If the time-to-failure was 1 h at 6.5 V, what is the expected time-
to-failure at 4.0 V? Assume a time-to-failure power-law exponent of n ¼ 3 for
the substrate current.

Answer: 3.7 years

15. MOSFETS were randomly selected and NBTI stress tested. The electric field in
the gate oxide during stress was Estress ¼ 8 MV/cm and the stress temperature
was Tstress ¼ 150 �C. If the devices started to fail in 1 h under NBTI stress, what
would the time-to-failure be at Eop ¼ 5 MV/cm and Top ¼ 105 �C? Assume an
exponential model with cNBTI ¼ 3.2 cm/MV and activation energy QNBTI ¼
0.6 eV.

Answer: 12 years

Problems 219



Bibliography

Corrosion

Dunn, C. and J. McPherson: Recent Observations on VLSI Bond Pad Corrosion Kinetics,
J. Electrochem. Soc., 661 (1988).

Flood, J.: Reliability Aspects of Plastic Encapsulated Integrated Circuits, IEEE International
Reliability Physics Symposium Proceedings, 95 (1972).

Gunn, J., R. Camenga and S. Malik: Rapid Assessment of the Humidity Dependence of IC Failure
Modes by Use of Hast, IEEE International Reliability Physics Symposium Proceedings,
66 (1983).

Koelmans, H.: Metallization Corrosion in Silicon Devices by Moisture-Induced Electrolysis, IEEE
International Reliability Physics Symposium Proceedings, 168 (1974).

Lawrence, D.. and J. McPherson: Corrosion Susceptibility of Al-Cu and Al-Cu-Si Films,
J. Electrochem. Soc., Vol. 137, 3879 (1990).

McPherson, J.: VLSI Corrosion Models: A Comparison of Acceleration Factors, Proceedings of
Third Intern. Symp. on Corrosion and Reliability of Electronic Materials and Devices,
Electrochem. Soc., Vol. 94–29, 270 (1994).

Paulson, W. and R. Kirk: The Effects of Phosphorus-Doped Passivation Glass on the Corrosion of
Aluminum, IEEE International Reliability Physics Symposium Proceedings, 172 (1972).

Peck, D.: The Design and Evaluation of Reliable Plastic-Encapsulated Semiconductor Devices,
IEEE International Reliability Physics Symposium Proceedings, 81 (1970).

Peck, D.: A Comprehensive Model for Humidity Testing Correlation, IEEE International Reliability
Physics Symposium Proceedings, 44 (1986).

Schnable, A. and R. Keen: Failure Mechanisms in Large-Scale Integrated Circuits, IEEE Interna-
tional Reliability Physics Symposium Proceedings, 170 (1969).

Electromigration (EM)

Black, J.: A Brief Survey of Some Recent Electromigration Results, IEEE Trans. Electron Dev.,
ED-16, 338 (1969).

Blech, I. and H. Sello: The Failure of Thin Aluminum Current-Carrying Strips on Oxidized Silicon,
Physics of Failures in Electronics Vol. 5, USAF-RADC Series, 496 (1966).

d’Heurle, F. and P. Ho, Electromigration in Thin Films. In: Thin Films: Interdiffusion and
Reactions, John Wiley & Sons, 243 (1978).

Filippi, R., G. Biery and R. Wachnik: The Electromigration Short-Length Effect in Ti-AlCu-Ti
Metallization with Tungsten Plugs, J. Appl. Phys., Vol. 78, 3756 (1995).

Graas, C., H. Le, J. McPherson and R. Havemann, Electromigration Reliability Improvements of
W-Plug vias by Titanium Layering, IEEE International Reliability Physics Symposium Pro-
ceedings, 173 (1994).

Hau-Riege, S.: Probabilistic Immortality of Cu Damascene Interconnects, Journal of Applied
Physics, 91(4), 2014 (2002).

Hau-Riege, C. A. P. Marathe, and V. Pham: The Effect of Low-k ILD on the Electromigration
Reliability of Cu Interconnects with Different Line Lengths, 41st Annual IEEE International
Reliability Physics Symposium Proceedings (IRPS), 173 (2003).

Hu, C. et al.: Scaling Effect on Electromigration in On-Chip Cu Wiring, IEEE International
Interconnect Conference, 267 (1999).

Hu, C., et al.: Effects of Overlayers on Electromigration Reliability Improvement for Cu/Low K
Interconnects, 42th Annual IEEE International Reliability Physics Symposium Proceedings
(IRPS), 222 (2004).

220 12 Time-to-Failure Models for Selected Failure Mechanisms in Integrated Circuits



Huntington, H. and A. Grone: Current Induced Marker Motion in Gold Wires, J. Phys. Chem.
Solids, VOL. 20, 76 (1961).

Hussein, M. and J. He:Materials Impact on Interconnect Process Technology and Reliability, IEEE
Transactions on Semiconductor Manufacturing, 18(01), 69 (2005).

Lane, M., E. Liniger, and J. R. Lloyd: Relationship between interfacial adhesion and
electromigration in Cu metallization, J. Appl. Phys., 93(3), 1417 (2003).

Lee, K., X. Lu, E. T. Ogawa, H. Matsuhashi, and P. S. Ho: Electromigration Study of Cu/low k
Dual-damascene Interconnects, 40th Annual IEEE International Reliability Physics Sympo-
sium Proceedings (IRPS), 322 (2002).

Lloyd, J.: Electromigration in Thin Film Conductors, Semicond. Sci. Technol. 12, 1177 (1997).
Maiz, J.: Characterization of Electromigration under Bidirectional and Pulsed Unidirectional
Currents, IEEE International Reliability Physics Symposium Proceedings, 220 (1989).

Martin, C. and J. McPherson: Via Electromigration Performance of Ti/W/Al-Cu(2%) Multilayered
Metallization, VLSI Multilevel Interconnect Conference Proceedings, 168 (1989).

McPherson, J., H. Le and C. Graas: Reliability Challenges for Deep Submicron Interconnects,
Microelectronics Reliability, Vol. 37, 1469 (1997).

Michael, N., C. Kim, P. Gillespie, and R. Augur: Mechanism of Reliability Failure in Cu Inter-
connects with Ultra-Low Materials, Applied Physics Letters, 83(10), 1959 (2003).

Oates, A.: Electromigration Failure Distribution of Contacts and Vias as a Function of Stress
Conditions in Submicron IC Metallizations, IEEE International Reliability Physics Symposium
Proceedings, 164 (1996).

Ogawa, E., et al.: Statistics of Electromigration Early Failures in Cu/Oxide Dual-Damascene
Interconnects, 39th Annual IEEE International Reliability Physics Symposium Proceedings
(IRPS), 341(2001).

Ogawa, E., K.-D. Lee, V. A. Blaschke, and P. S. Ho: Electromigration Reliability Issues in Dual-
Damascene Cu Interconnections, IEEE Transactions on Reliability, 51(4), 403 (2002a).

Ondrusek, J., C. Dunn and J. McPherson: Kinetics of Contact Wearout for Silicided(TiSi2) and
Nonsilicided Contacts, IEEE International Reliability Physics Symposium Proceedings,
154 (1987).

Park, Y. Park, K.-D. Lee and W. R. Hunter, 43th Annual IEEE International Reliability Physics
Symposium Proceedings (IRPS), 18 (2005).

Shatzkes, M. and J. R. Lloyd: A Model for Conductor Failure Considering Concurrently with
Electromigration Resulting in a Current Exponent of 2, J. Appl. Physics, Vol. 59, 3890 (1986).

Steenwyk, S. and E. Kankowski: Electromigration in Aluminum to Ta-Silicide Contacts, IEEE
International Reliability Physics Symposium Proceedings, 30 (1986).

Ting, L., J. May, W. Hunter and J. McPherson: AC Electromigration Characterization and
Modeling of Multilayered Interconnects, IEEE International Reliability Physics Symposium
Proceedings, 311 (1993).

Vaidya, S. et al.: Electromigration Induced Shallow Junction Leakage with Al/Poly-Si Metalliza-
tion, J. Electrochem. Soc., Vol. 130, 496 (1983).

Vaidya, S., et al.: Shallow Junction Cobalt Silicide Contacts with Enhanced Electromigration
Resistance, J. Appl. Phys. Vol. 55, 3514 (1984).

Hot Carrier Injection (HCI)

Aur, S., A. Chatterjee and T. Polgreen: Hot Electron Reliability and ESD Latent Damage, IEEE
International Reliability Physics Symposium Proceedings, 15 (1988).

Fang, P., J.T. Yue, and D. Wollesen: A Method to Project Hot-Carrier Induced Punch Through
Voltage Reduction for Deep Submicron LDD PMOS FETs at Room and Elevated Temperatures,
IEEE International Reliability Physics Symposium Proceedings, 131 (1982).

Bibliography 221



LaRosa, G., et al.: NBTI Channel Hot Carrier Efffects in PMOSFETS in Advanced CMOS
Technologies, IEEE International Reliability Physics Symposium Proceedings, 282 (1997a).

Liu, Z., et al.: Design Tools for Reliability Analysis, IEEE Design Tools for Reliability Analysis,
IEEE Design Automation Conference, pp. 182–185, (2006).

Lu, M., et al.: Hot Carrier Degradation in Novel Strained Si n-MOSFETs, IEEE International
Reliability Physics Symposium Proceedings, pp. 18–21, (2004).

Ong, T., P. Ko and C. Hu: Hot-Carrier Current Modeling and Device Degradation in Surface
Channel PMOSFET, IEEE Trans. on Electron Devices, ED-37, 1658 (1990).

Snyder, E., D. Cambell, S. Swanson and D. Pierce: Novel Self-Stressing Test Structures for Realistic
High-Frequency Reliability Characterization, IEEE International Reliability Physics Sympo-
sium Proceedings, 57 (1993).

Takeda, E., R. Izawa, K. Umeda and R. Nagai: AC Hot-Carrier Effects in Scaled MOS Devices,
IEEE International Reliability Physics Symposium Proceedings, 118 (1991).

Wang, W., et al.: An Integrated Modeling Paradigm of Circuit Reliability for 65 nm CMOS
Technology, IEEE Custom Integrated Circuits Conference, pp. 511–514 (2007).

Wang-Ratkovic, J. et al.: New Understanding of LDD CMOS Hot-Carrier Degradation and Device
Lifetime at Cryogenic Temperatures, IEEE International Reliability Physics Symposium Pro-
ceedings, 312 (1997).

Yue J.: Reliability. In: ULSI Technology, McGraw-Hill, 657 (1996a).

Mobile-Ions/Surface-Inversion

Hefley, P. and J. McPherson: The Impact of an External Sodium diffusion Source on the Reliability
of MOS Circuitry, IEEE International Reliability Physics Symposium Proceedings, 167 (1988).

Schnable, A.: Failure Mechanisms in Microelectronic Devices, Microelectronics and Reliability,
(1988).

Snow, E., A.S. Grove, B.E. Deal, and C.T. Sah: Ion Transport Phenomenon in Insulating Films,
J. Appl. Phys. Vol 36, 1664 (1965).

Snow, E. and B.E. Deal: Polarization Phenomena and Other Properties of Phosphosilicate Glass
Films on Silicon, J. Electrochem. Soc., Vol 113, 263 (1966).

Stuart, D.: Calculations of Activation Energy of Ionic Conductivity in Silica Glass by Classical
Methods, Journal of the American Ceramic Society, 573 (1954).

Negative-Bias Temperature Instability (NBTI)

Abadeer, W. and W. Ells: Behavior of NBTI Under AC Dynamical Circuit Conditions, IEEE
International Reliability Physics Symp., pp. 17–22, (2003).

Alam, A., et al.: A Comprehensive Model of PMOS Negative Bias Temperature Degradation,
Microelectronics Reliability, pp. 71–81 (2005).

Chakravarthi, S. et al.: A Comprehensive Framework for Predictive Modeling of Negative Bias
Temperature Instability, IEEE International Reliability Physics Symp. pp. 273–282, (2004).

Chen, G., et al.: Dynamic NBTI of PMOS Transistors and Its Impact on Device Lifetime, IEEE
International Reliability Physics Symp. pp. 196–202, (2003).

Huard V. and M. Denais: Hole Trapping Effect on Methodology for DC and AC Negative Bias
Temperature Instability Measurements in pMOS transistors, IEEE International Reliability
Physics Symp. pp. 40–45 (2003).

222 12 Time-to-Failure Models for Selected Failure Mechanisms in Integrated Circuits



Kimizuka, N., et al.,: The Impact of Bias Temperature Instability for Direct-Tunneling in Ultrathin
Gate Oxide on MOSFET Scaling, VLSI Symp. On Tech., pp. 73–74, (1999).

Krishnan, A., et al.: NBTI Impact on Transistor and Circuit: Models, Mechanisms and Scaling
Effects, IEEE-IEDM, pp. 349–352, (2003).

Larosa, G., et al.,: NBTI-Channel Hot Carrier Effects in Advanced Sub-Micron PFET Technologies,
IEEE Interational Reliability Physics Symp. Proceedings, pp. 282–286 (1997b).

Mahaptra, S., et al.: Negative bias Temperature Instability in CMOS Devices, Microelectronics
Reliability, pp. 114–121 (2005).

Ogawa, S. and N. Shiono: Generalized Diffusion–reaction Model for the Low-Field Chaarge
Buildup Instability at the Si-SiO2 Interface, Physical Rev. B, p. 4218 (1995).

Rangan, S., et al.: Universal Recovery Behavior of Negative Bias Temperature Instability, IEEE-
IEDM, pp. 341–344.(2003).

Reddy, V., et al.: Impact of Negative Bias Temperature Instability on Digital Circuit Reliability,
pp. 248–254, (2002).

Schlunder, C. et al.: Evaluation of MOSFET Reliability in Analog Applications, IEEE, International
Reliability Physics Symposium, pp. 5–10, (2003).

Stathis, J. and S. Zafar: The Negative Bias Temperature Instability of MOS Devices: A Review,
Microelectronics Reliability, pp. 270–286 (2006).

Stress Migration/Stress-Induced Voiding

Edelstein, D., et al.: Full Copper Wiring in a Sub-0.25 μm CMOS ULSI Technology, IEEE
International Electron Devices Meeting Technical Digest, 773 (1997).

Groothuis, S. and W. Schroen: Stress Related Failures Causing Open Metallization, IEEE Inter-
national Reliability Physics Symposium Proceedings, 1 (1987).

Harper, J., et al.: Mechanisms for Microstructure Evolution in Electroplated Copper Thin Films
Near Room Temperature, Journal of Applied Physics, 86(5), 2516 (1999).

Klema, J., R. Pyle and E. Domangue: Reliability Implications of Nitrogen Contaminated during
Deposition of Sputtered Aluminum/Silicon Metal Films, IEEE International Reliability Physics
Symposium Proceedings, 1 (1984).

McPherson, J. and C. Dunn: AModel for Stress-Induced Metal Notching and Voiding in VLSI Al-Si
Metallization, J. Vac. Sci. Technology B, 1321 (1987).

McPherson, J.: Accelerated Testing. In: Electronic Materials Handbook, Volume 1 Packaging,
ASM International Publishing, 887 (1989).

Ogawa, E., J. W. McPherson, J. A. Rosal, K. J. Dickerson, T.-C. Chiu, L. Y. Tsung, M. K. Jain,
T. D. Bonifield, J. C. Ondrusek, and W. R. McKee: Stress-Induced Voiding Under Vias
Connected To Wide Cu Metal Leads, 40th Annual IEEE International Reliability Physics
Symposium Proceedings (IRPS), 312 (2002b).

Paik, J., J.-K. Jung and Y.-C. Joo: The Dielectric Material Dependence of Stress and Stress
Relaxation on the Mechanism of Stress-Voiding of Cu Interconnects, 43th Annual IEEE
International Reliability Physics Symposium Proceedings (IRPS), 195 (2005).

Von Glasow, A., A. H. Fischer, M. Hierlemann, S. Penka, and F. Ungar: Geometrical Aspects of
Stress-Induced Voiding in Copper Interconnects, Advanced Metallization Conference Proceed-
ings (AMC), 161 (2002).

Yoshida, K., T. Fujimaki, K. Miyamoto, T. Honma, H. Kaneko, H. Nakazawa, and M. Morita:
Stress-Induced Voiding Phenomena for an actual CMOS LSI Interconnects, IEEE International
Electron Devices Meeting Technical Digest, 753 (2002).

Yue, J., W. Fusten and R. Taylor: Stress Induced Voids in Aluminum Interconnects During IC
Processing, IEEE International Reliability Physics Symposium Proceedings, 126 (1985).

Yue, J.: Reliability. In: ULSI Technology, McGraw-Hill, 674 (1996b).

Bibliography 223



Temperature-Cycling/Fatigue

Blish, R.: Temperature Cycling and Thermal Shock Failure Rate Modeling, IEEE International
Reliability Physics Symposium Proceedings, 110 (1997).

Caruso, H. and A. Dasgupta: A Fundamental Overview of Accelerated-Testing Analytical Models,
Proceedings of Annual Rel. and Maintainability Symposium, 389 (1998).

Coffin, L., Met. Eng. Q., Vol 3, 15 (1963).
Dieter, G.: Mechanical Metallurgy, McGraw-Hill, 467 (1976).
Dunn, C. and J. McPherson: Temperature Cycling Acceleration Factors in VLSI Applications, IEEE

International Reliability Physics Symposium Proceedings, 252 (1990).
Manson, S.: Thermal Stress and Low-Cycle Fatigue,McGraw-Hill Book Co., New York, (1966).

Time-Dependent Dielectric Breakdown (TDDB)

Anolick, E. and G. Nelson: Low-Field Time-Dependent Dielectric Integrity, IEEE International
Reliability Physics Symposium Proceedings, 8 (1979).

Berman, A.: Time Zero Dielectric Reliability Test by a RampMethod, IEEE International Reliability
Physics Symposium Proceedings, 204 (1981).

Boyko, K. and D. Gerlach: Time Dependent Dielectric Breakdown of 210A Oxides, IEEE Interna-
tional Reliability Physics Symposium Proceedings, 1 (1989).

Charparala, P., et al.: Electric Field Dependent Dielectric Breakdown of Intrinsic SiO2 Films Under
Dynamic Stress, IEEE International Reliability Physics Symposium Proceedings, 61 (1996).

Chen, I., S. Holland and C. Hu: A Quantitative Physical Model for Time-dependent Breakdown,
IEEE International Reliability Physics Symposium Proceedings, 24 (1985).

Cheung, K.: A Physics-Based, Unified Gate-Oxide Breakdown Model, Technical Digest of Papers
International Electron Devices Meeting, 719 (1999).

Crook, D.: Method of Determining Reliability Screens for Time-Dependent Dielectric Breakdown,
IEEE International Reliability Physics Symposium Proceedings, 1 (1979).

Degraeve, R., et al.: New Insights in the Relation Between Electron Trap Generation and the
Statistical Properties of Oxide Breakdown, IEEE Trans. Electron Devices 45, 904 (1998).

DiMaria, D. and J. Stasiak: Trap Creation in Silicon Dioxide Produced by hot electrons, J. Appl.
Physics, Vol 65, 2342 (1989).

DiMaria, D., E. Cartier and D. Arnold: Impact ionization, trap creation, degradation, and break-
down in silicon dioxide films on silicon, J. Appl. Physics, Vol 73, 3367 (1993).

Eissa, M., D. A. Ramappa, E. Ogawa, N. Doke, E. M. Zielinski, C. L. Borst, G. Shinn, and A. J.
McKerrow: Post-Copper CMP Cleans Challenges for 90 nm Technology, Advanced Metalli-
zation Conference Proceedings (AMC), 559 (2004).

Hu, C. and Q. Lu: A Unified Gate Oxide Reliability Model, IEEE International Reliability Physics
Symposium Proceedings, 47 (1999).

Haase, G., E. T. Ogawa and J. W. McPherson: Breakdown Characteristics of Interconnect
Dielectrics, 43th Annual IEEE International Reliability Physics Symposium Proceedings
(IRPS), 466 (2005).

Kimura, M.: Oxide Breakdown Mechanism and Quantum Physical Chemistry for Time-Dependent
Dielectric Breakdown, IEEE International Reliability Physics Symposium Proceedings,
190 (1997).

Lee, J., I. Chen and C. Hu: Statistical Modeling of Silicon Dioxide Reliability, IEEE International
Reliability Physics Symposium Proceedings, 131 (1988).

McPherson, J. and D. Baglee: Acceleration factors for Thin Gate Oxide Stressing, IEEE Interna-
tional Reliability Physics Symposium Proceedings, 1 (1985).

224 12 Time-to-Failure Models for Selected Failure Mechanisms in Integrated Circuits



McPherson, J. and H. Mogul: Underlying Physics of the Thermochemical E-Model in Describing
Low-Field Time-Dependent Dielectric Breakdown in SiO2 Thin Films, J. Appl. Phys., Vol.
84, 1513 (1998).

McPherson, J., R. Khamankar and A. Shanware: Complementary Model for Intrinsic Time-
Dependent Dielectric Breakdown in SiO2 Dielectrics, J. Appl. Physics, Vol. 88, 5351 (2000).

McPherson, J.: Trends in the Ultimate Breakdown Strength of High Dielectric-Constant Materials,
IEEE Trans. On Elect. Devs., Vol. 50, 1771 (2003).

McPherson, J.: Determination of the Nature of Molecular bonding in Silica from Time-Dependent
Dielectric Breakdown Data, J. Appl. Physics, Vol. 95, 8101 (2004).

Moazzami, R., J. Lee and C. Hu: Temperature Acceleration of Time-Dependent Dielectric Break-
down, IEEE Trans. Elect. Devices, Vol. 36, 2462 (1989).

Nicollian, P.: Experimental Evidence for Voltage Driven Breakdown Models in Ultra-Thin Gate
Oxides, IEEE International Reliability Physics Symposium, 47 (1999).

Noguchi, J., N. Miura, M. Kubo, T. Tamaru, H. Yamaguchi, N. Hamada, K. Makabe, R. Tsuneda
and K. Takeda: Cu-Ion-Migration Phenomena and its Influence on TDDB Lifetime in Cu
Metallization, 41st Annual IEEE International Reliability Physics Symposium Proceedings
(IRPS), 287 (2003).

Ogawa, E., J. Kim and J. McPherson: Leakage, Breakdown, and TDDB Characteristics of Porous
Low-k Silica-Based Interconnect Dielectrics, IEEE-IRPS Proceedings, 166 (2003a).

Ogawa, E., J. Kim, G. S. Haase, H. C. Mogul, and J. W. McPherson: Leakage, Breakdown, and
TDDB Characteristics of Porous Low-K Silica-Based Interconnect Dielectrics, 41st Annual
IEEE International Reliability Physics Symposium Proceedings (IRPS), 166 (2003b).

Pompl, T., et al.: Change in Acceleration Behavior of Time-Dependent Dielectric Breakdown by the
BEOL Process: Indications for Hydrogen Induced Transition in Dominant Degradation Mech-
anism, IEEE International Reliability Physics Symposium, 388 (2005).

Schuegraph, K. and C. Hu: Hole Injection Oxide Breakdown Model for Very Low Voltage Lifetime
Extrapolations, IEEE International Reliability Physics Symposium Proceedings, 7 (1993).

Suehle, J., et al.: Field and Temperature Acceleration of Time-Dependent Dielectric Breakdown in
Intrinsic Thin SiO2, IEEE International Reliability Physics Symposium Proceedings,
120 (1994).

Suehle, J. and P. Chaparala: Low Electric Field Breakdown of Thin SiO2 Films Under Static and
Dynamic Stress, IEEE Trans. Elect. Devices, 801 (1997).

Sune, J., D. Jimenez, and E. Miranda: Breakdown Modes and Breakdown Statistics of Ultrathin
SiO2 Gate Oxides, J. High Speed Electronics and Systems, 11, 789 (2001).

Stathis, J and D. DiMaria: Reliability Projection for Ultra-Thin Oxides at Low Voltage, Technical
Digest of Papers International Electron Devices Meeting, 167 (1998).

Swartz, G.: Gate Oxide Integrity of NMOS Transistor Arrays, IEEE Trans. on Electron Devices,
Vol. ED-33, 1826 (1986).

Tsu, R., J. W. McPherson, and W. R. McKee: Leakage and Breakdown Reliability Issues Associ-
ated with Low-k Dielectrics in a Dual-Damascene Cu Process, 38th Annual IEEE International
Reliability Physics Symposium Proceedings (IRPS), 348 (2000).

Wu, E. et al.: Experimental Evidence of TBD Power-Law for Voltage Dependence of Oxide
Breakdown in Ultrathin Gate Oxides, IEEE Trans. On Electron Devices, Vol. 49, 2244 (2002a).

Wu, E., et al.: Polarity-Dependent Oxide Breakdown of NFET Devices for Ultra-Thin Gate Oxide,
IEEE International Reliability Physics Symposium, 60 (2002b).

Bibliography 225



Chapter 13
Time-to-Failure Models for Selected Failure
Mechanisms in Mechanical Engineering

The mechanical properties of materials are related to the fundamental bonding
strengths of the constituent atoms in the solid and any bonding defects which
might form. A molecular model is presented so that primary bond formation
mechanisms (ionic, covalent, and metallic) can be better understood. How these
bonds form and respond to mechanical stress/loading is very important for engi-
neering applications. A discussion of elasticity, plasticity and bond breakage is
presented. The theoretical strengths of most molecular bonds in a crystal are seldom
realized because of crystalline defects limiting the ultimate strength of the materials.
Important crystalline defects such as vacancies, dislocations, and grain boundaries
are discussed. These crystalline defects can play critically important roles as time-to-
failure models are developed for: creep, fatigue, crack propagation, thermal expan-
sion mismatch, corrosion and stress-corrosion cracking.

1 Molecular Bonding in Materials

As emphasized in earlier chapters, mechanical device failures result from: materials
degradation (generally causing a shift in some critical device parameter) and even-
tual device failure. Since the material’s properties are ultimately related to the
molecular bonding in the material and any bonding defects which might form, it is
important to have a fundamental understanding of this bonding.

Figure 13.1 illustrates the bonding of two atoms. As the atoms are brought closer
together (from a great distance away), an attractive potential develops tending to
pull the atoms closer together. This attractive potential develops because of the
transfer or sharing of the valence electrons of the interacting atoms. At very small
distances (r < r0), a strong repulsive potential develops between the two atoms

© Springer Nature Switzerland AG 2019
J. W. McPherson, Reliability Physics and Engineering,
https://doi.org/10.1007/978-3-319-93683-3_13

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93683-3_13&domain=pdf


because of atom-1 core electrons interacting with atom-2 core electrons due to the
Pauli Exclusion Principle.1

The bonding potential in Fig. 13.1 is often approximated by using a Mie (or Mie-
Grüneisen) Potential ϕ(r):

ϕ rð Þ ¼ A

rm
� B

rn
m > nð Þ: ð13:1Þ

The parameters A and B can be determined from equilibrium conditions at r ¼ r0
where the bonding energy is �ϕBE and the slope of the potential is zero:

ϕ r ¼ r0ð Þ ¼ �ϕBE ð13:2Þ
and

∂ϕ
∂r

� �
r¼r0

¼ 0: ð13:3Þ

Thus, Eq. (13.1) becomes:

ϕ rð Þ ¼ ϕBE
mn

m� n

� � 1
m

r0
r

� �m
� 1
n

r0
r

� �n� �
: ð13:4Þ

Fig. 13.1 Molecular bonding equilibrium develops due to the competition of the attractive and
repulsive potential terms. Equilibrium bonding distance is r ¼ r0. The bonding energy is �ϕBE

1Classical description is—two bodies cannot occupy the same space.
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The repulsive exponent m is normally obtained from compressibility studies and
is found to be generally in the range m ¼ 8–12. Some often used forms of this
potential are: the Born-Landé potential (m ¼ 9, n ¼ 1) used for ionic bonding
(transferring of valence electrons); the Harrison potential (m ¼ 9, n ¼ 2) used for
covalent bonding (sharing of valence electrons); and the Lenard-Jones potential
(m ¼ 12, n ¼ 6) used for dipolar bonding. Even for metallic bonding (sea of
conduction electrons minimizing the repulsive nature of the host metal ions), the
potential shown in Fig. 13.1 can still be useful. The Pauling classification of ionic
character of bonds is shown in Fig. 13.2.

Normally, any bond with an ionic character of f* ¼ 0.6 � 0.1 is considered to be
strongly ionic/polar. Ionic bonds are of relatively longer range and are
non-directional (no preferred direction). The valence electrons are transferred from
an atom of low electronegativity to another atom of higher electronegativity. The
atoms in a strongly ionic solid generally take a close-pack arrangement depending on
the ionic radii of the bonding elements involved. Since ionic bonding is of longer
range, the total bonding potential is due to nearest neighbors and beyond. The impact
of the extended ionic bonding potential is often accounted for by the use of the
Madelung constant2 which comes from the summation of the contributions to the
potential from both near and far neighbors.

Covalent bonds are generally highly directional because of quantum mechanical
restrictions on the bonding to only along preferred directions. Covalent bonds are
typically of shorter range (more localized). Shown in Fig. 13.3 is the longer-range
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Fig. 13.2 Ionic character of bonds is shown using Pauling electronegativity. Bonds with f* values
of greater than 0.5 are considered to be strongly polar

2In order that ionic contributions are comprehended from both near and far, the potential for anion-
pair is often written as: φ(r) ¼ �αe2/r, where α is the Madelung constant. In cubic crystalline
structures, α ¼ 1 to 2.
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nature of the ionic bond [(9, 1) potential] versus the more covalent-type bonds [(9, 2)
and (9, 3) type bonds]. Covalent bonding generally leads to very hard and
non-ductile materials such as diamond. Also, important semiconductors (silicon
and germanium) are due to covalent bonds. Normally, these materials have higher
modulus E and tend to be hard and can be brittle.

Metallic bonds (due to the relatively free-moving conduction electrons in a host
metal-ion matrix) are less dependent on the exact positions of the host lattice metal
ions. This type of bonding produces the ductile and malleable properties of metals.
Large material deformation (yielding) is possible before material cracking or rupture
occurs.

Secondary bonds (dipolar and hydrogen bonds) are generally much weaker than
the primary bonds (ionic, covalent, and metallic). Since the secondary bonds are
relatively weak, solid materials formed using these secondary bonds exclusively are
characterized by relatively low melting points and relatively poor mechanical
properties.

The bond energy �ϕBE is a critically important parameter because it represents
the strength/stability of the bond. Very strong bonds can have values of bond energy
of the order of several electron volts (eV) while very weak bonds generally have
bonding energies of less than 1 eV. Shown in Table 13.1 are the single-bond energies
for a few selected molecules. In this table, U(e) represents the electronic/ covalent
component to the bonding energy, U(i) represents the ionic component, and U(t)

represents the total bonding energy. In general, the stronger bonds have more ionic
character and the bond energy can be several eV. The covalent bond energy is

3

r
2

1

0

−1

−2

−3
0 1 2 3 4 5

Fig. 13.3 The bonding potential (9, n) tends to show a more localized bonding nature when the
value of n increases. Generally, n ¼ 1 is used for ionic bonds, n ¼ 2 (or greater) for covalent bonds
and n ¼ 6 is used for dipolar bonding
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somewhat less, usually around a few eV. Dipolar and hydrogen bonding can result in
relatively weaker bond energies (generally less than 1 eV). These bonds are rela-
tively weak and that is the reason why water (dependent on secondary bonding) is a
solid only below 0 �C and vaporizes easily at 100 �C.

2 Origin of Mechanical Stresses in Materials

Let us now consider what happens when one applies an external force to the bond
(load the bond), as shown in Fig. 13.4. One can see that the bond resists the external
force by trying to create an equal, but opposite, internal force.

In static equilibrium, the external forces must be equal and opposite to the internal
forces and one can write:

Fext ¼ �Fint rð Þ ¼ ∂ϕ
∂r

� �
, ð13:5Þ

giving

Fext ¼ ϕBE
mn

m� n

� �
� 1
r0

r0
r

� �mþ1
þ 1
r0

r0
r

� �nþ1
� �

: ð13:6Þ

The general shape of the curve, for the external force Fext versus atom separation
r, is shown in Fig. 13.5.

The curve in Fig. 13.5 is very important because dW ¼ Fext dr represents the
incremental amount of work that is done by the external force on the bond (either
stretching or compressing the bond). This incremental work serves to increase the

Table 13.1 Selected single-bond energies (Pauling approach)

Bond
Electronegativities
(XA � XB) U(e) (eV) U(i) (eV) U(t) (eV)

Ionic % of total bond
energy (%)

O–O 3.5–3.5 1.4 0.0 1.4 0

F–F 4.0–4.0 1.6 0.0 1.6 0

N–N 3.0–3.0 1.7 0.0 1.7 0

Cl–Cl 3.0–3.0 2.5 0.0 2.5 0

H–H 2.1–2.1 4.5 0.0 4.5 0

Si–Si 1.8–1.8 1.8 0.0 1.8 0

H–Si 2.1–1.8 2.9 0.1 3.0 3

N–Si 3.0–1.8 1.8 1.9 3.7 51

Cl–Si 3.0–1.8 2.1 1.9 4.0 48

O–H 3.5–2.1 2.5 2.6 5.1 51

O–Si 3.5–1.8 1.6 3.8 5.4 70

F–Si 4.0–1.8 1.7 6.3 8.0 79
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energy of the bond (making the bond energy more positive) thus making the bond
less stable and more susceptible to breakage. From Fig. 13.5, one can see what
happens when we stretch or compress the bond beyond its elastic limit. The elastic
region (Hooke’s Law region) is a region where, once the external force is removed,
the material returns back to its original unstressed position (thus no permanent
changes to the bonding or to the materials).

Fext

FintFint

Fext

Fext Fext

FintFint

(a)

(b)

Bond in Compression

Bond in Tension

Fig. 13.4 Bonds are shown
in states of compression and
tension. External forces Fext

are shown as well as the
internal resistive forces Fint

r0 r1

Fext (r)

r

Fmax

¶f
¶r

(+)

(-)

}
Tension

Compression

Limited Region for
Hooke’s Law Validity

Fext = −Fint =

Fig. 13.5 External force Fext versus bonding distance r
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3 Elastic Behavior of Materials

The elastic region for the bond can be characterized by a spring with spring constant
(or stiffness constant) κ, as shown in Fig. 13.6. The value of κ can be determined
from the molecular potential:

κ ¼ ∂2ϕ

∂r2

 !
r¼r0

¼ ϕBE
mn

r20

� �
: ð13:7Þ

The elastic behavior leads to a quadratic/harmonic potential energy of the form:

ϕ xð Þ ¼ �
ðX
0

~F � d~x ¼ κ

ðX
0

xdx ¼ 1
2
κx2: ð13:8Þ

Note that the elastic energy goes as the square of the displacement (for small
displacement) of the atoms from their equilibrium positions. Since this is a harmonic
potential, once the atoms are displaced from their equilibrium positions and sud-
denly released, the atoms are expected to oscillate about their equilibrium positions
until the elastic energy is dissipated.3

Let us now go from the microscopic level (atom level) to the macroscopic level
(solid level) as shown in Fig. 13.7. From Fig. 13.7, one can see that if the number of
such bonds per unit area is η then the stress needed to elastically displace the atoms
from their equilibrium position is given by:

F = -κ(r-r0)= -κx

- F(r > r0) + F(r < r0)
Fig. 13.6 In the region of
Hooke’s Law validity
(elastic behavior), the force
acting on the interacting
atoms is directly
proportional to the
displacement of the atoms
from their equilibrium
positions. Hooke’s law leads
to a simple harmonic
potential energy of the form:
ϕ(x) ¼ (1/2)κ x2, where
x ¼ r – r0

3The classical oscillator will oscillate until all its energy is finally dissipated. The quantum
oscillator, however, will dissipate its energy in quantum amounts (n + 1/2) hω until it finally
reaches its ground state. In the ground state (n=0), the quantum oscillator will still have zero-point
energy oscillation: (1/2)hω.
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σ ¼ FTota1

A
¼ η � A � κ r � r0ð Þ½ �

A
¼ ηκ r � r0ð Þ: ð13:9Þ

But, since η ¼ 1 bond/r20, then

σ ¼ κ

r0

r � r0
r0

� �
¼ Eε, ð13:10Þ

where the modulus E is given by:

E ¼ κ

r0
¼ m � nð ÞϕBE

r30
: ð13:11Þ

Example Problem 1
Typical primary molecular single-bond energies are ~2 eV and typical equi-

librium bond lengths are ~2 A
�
. Estimate Young’s modulus for: (a) (m ¼ 9,

n ¼ 1) bonding potential, (b) (m ¼ 9, n ¼ 2) bonding potential and (c) (m ¼
9, n ¼ 3) bonding potential.

Solution
Equation (13.11) gives:

E ¼ m � nð ÞϕBE

r30
:

(continued)

r0

r0

r0

r0

r

Area = A

FTotal

L = Nr

Fig. 13.7 Planar cross-
section illustrates the
bonding/ springs between
nearest neighboring atoms
along the length of the solid.
Plane-to-plane bonding/
springs are compressed by
the applied stress. With
N cross-sectional units along
the length of the solid, the
length L of the solid is
simply L ¼ Nr. Only
bonding/springs between
planes are shown
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(a) For (9, 1) bonding one obtains:

E ¼ 9 � 1ð Þ2eV�
2 A

� 	3 ¼ 2:25
eV�
A
� 	3 � 1:6� 10�19J

1eV

� �
� 1 A

�

10�10m

0@ 1A3

� 1Nm
1J

� �
� 1GPa

109N=m2

� �
¼ 360GPa:

This value of modulus is similar to modulus values reported for
medium strength steels, silicon nitride, titanium carbide, and tantalum
carbide.

(b) For (9, 2) bonding one obtains:

E ¼ 9 � 2ð Þ2eV�
2 A

� 	3 ¼ 720GPa:

This value of modulus is similar to very hard materials such as tungsten
carbide.

(c) For (9, 3) bonding one obtains:

E ¼ 9 � 3ð Þ2eV�
2 A

� 	3 ¼ 1, 080GPa:

This is similar to an extremely hard material such as diamond.

The elastic energy density in a macroscopic material can also be determined from
the microscopic bonding. The elastic energy density (elastic energy per unit volume)
is given by uelastic:

uelastic ¼ Total Elastic Energy
Vo1umeð Þ0

¼
η � A � 1

2
κ r � r0ð Þ2

� �
� N

Nr0ð Þ � A

¼ 1
2
κη r0ð Þ N r � r0ð Þ

Nr0

� �2
¼ 1

2
κ

r0

� �
ΔL
L0

� �2
:

ð13:12Þ

Therefore, the elastic energy density in a solid material is given by:

uelastic ¼ 1
2
Eε2 ð13:13Þ
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Example Problem 2
For many materials, the elastic region is fairly small (elastic behavior occurs

for strains of about 1 % or less) and the average bond distance is about 2 A
�
. If

the material’s modulus is 350 GPa:

(a) Find the elastic energy density for a 1 % strain.
(b) Find the elastic energy per atom for a 1 % strain.

Solution
The elastic energy density is given by:

uelastic ¼ 1
2
Eε2:

(a) The elastic energy density becomes:

uelastic ¼ 1
2
350GPað Þ 0:01ð Þ2 ¼ 1:75� 10�2 GPa ¼ 1:75� 107

N
m2

¼ 1:75� 107
Nm
m3

� 1J
1Nm

� �
1eV

1:6� 10�19J

� �
1m

100cm

� �3

¼ 1:09� 1020
eV
cm3

:

(b) Since the average bonding distance is 2 A
�
, the atom density becomes:

1atom�
2 A

� 	3 : 1 A
�

10�8cm

0@ 1A3

¼ 1:25� 1023
atoms
cm3

:

Thus, the elastic energy per atom is:

elastic energy
atom

¼ ue1astic
#atoms=volume

¼ 1:09� 1020eV=cm3

1:25� 1023atom=cm3

¼ 8:72� 10�4eV=atom ffi 1� 10�3 eV
atom

:

One should note that the elastic energy per atom is much, much smaller
than the average single-bond strength (2 eV) per atom.
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4 Inelastic/Plastic Behavior of Materials

When the bond is placed under the tensile load of an external force Fext, one can see
from Fig. 13.5 that the response of the bond to this load is linear only for very small
displacements about r0. When the displacement r is significantly greater than r0, then
the bond weakens, as indicated by the reduction in force Fext needed to produce the
next incremental displacement dr. Finally, as r is increased beyond r1, the bond can
no longer support the large fixed load Fext and the bond will fail.

The value of r¼ r1, which is an important bond parameter, can be found by using
the fact that the external force Fext is a maximum at r ¼ r1.

∂F
∂r

� �
r¼r1

¼ ∂2ϕ

∂r2

 !
r¼r1

¼ 0: ð13:14Þ

This gives

r1 ¼ mþ 1
nþ 1

� � 1
m�n

r0: ð13:15Þ

With r1 now determined, one can estimate the maximum tensile force that a bond
can support.

Fextð Þmax ¼ � Fintð Þr¼r1
¼ ∂ϕ

∂r

� �
r¼r1

, ð13:16Þ

giving,

Fextð Þmax ¼
ϕBE

r0

� �
η m; nð Þ, ð13:17Þ

where,

η m; nð Þ ¼ mn
m� n

� � mþ 1
nþ 1

� �nþ1
n�m

� mþ 1
nþ 1

� �mþ1
n�m

" #
: ð13:18Þ

In Table 13.2 are shown two key bonding coefficients/parameters for the
Mie-Grüneisen potential. Because of their general usefulness and importance, the
(m¼ 9, n¼ 1) and (m¼ 9, n¼ 2) potentials are emphasized. Note that the maximum
strain (r1 - r0)/r0 that the atoms can support before bond breakage occurs is generally
< 30 %.
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Example Problem 3
The bond energy for two elements was determined to be 2.5 eV with an

equilibrium bond distance of 1.5 A
�
. Assuming that the bond can be described

by a (m ¼ 9, n ¼ 1) bonding potential,

(a) What is the maximum tensile force that the bond can support?
(b) What is the maximum bond displacement from equilibrium before the

bond fails?
(c) If there are approximately 1015 such bonds per cm2 in a cross-sectional

area of the solid, then estimate the maximum tensile stress, in Giga-Pascals
(GPa), that this material can withstand before it ruptures.

Solution

(a) Using Eq. (13.17) and Table 13.2, one obtains:

Fextð Þmax ¼
ϕBE

r0

� �
η 9; 1ð Þ ¼ 2:5eV

1:5 A
�

 !
0:60ð Þ ¼ 1eV= A

�
:

Conversion factors used:

1
�
eV=A

� 	 1:602� 10�12erg
eV

� �
1 A

�

10�8cm

0@ 1A 1dyne� cm
erg

� �
¼ 1:602� 10�4dynes:

(continued)

Table 13.2 Important bond-modeling parameters (Mie-Grüneisen potential)

η(m, n) m ¼ 12 m ¼ 11 m ¼ 10 m ¼ 9 m ¼ 8 m ¼ 7 m ¼ 6

n ¼ 1 0.66 0.64 0.62 0.60 0.58 0.55 0.52

n ¼ 2 1.19 1.15 1.12 1.07 1.03 0.97 0.91

n ¼ 3 1.64 1.59 1.53 1.47 1.39 1.31 1.22

n ¼ 4 2.03 1.96 1.89 1.80 1.71 1.60 1.48

n ¼ 5 2.38 2.29 2.20 2.09 1.98 1.85 1.70

n ¼ 6 2.69 2.59 2.47 2.35 2.21 2.06 –

r1/r0 m ¼ 12 m ¼ 11 m ¼ 10 m ¼ 9 m ¼ 8 m ¼ 7 m ¼ 6

n ¼ 1 1.19 1.20 1.21 1.22 1.24 1.26 1.28

n ¼ 2 1.16 1.17 1.18 1.19 1.20 1.22 1.24

n ¼ 3 1.14 1.15 1.16 1.16 1.18 1.19 1.21

n ¼ 4 1.13 1.13 1.14 1.15 1.16 1.17 1.18

n ¼ 5 1.12 1.12 1.13 1.14 1.14 1.15 1.17

n ¼ 6 1.11 1.11 1.12 1.13 1.13 1.14 –
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(b) Table 13.2 tells us that the maximum displacement, before bond rupture
occurs, is:

r1
r0

¼ 1:22 ) r1 � r0 ¼ 0:22r0 ¼ 0:22
�
1:5 A

� 	 ¼ 0:33 A
�
:

Note that this represents a strain of:

r1 � r0
r0

¼ 22%:

(c) Since it takes a force of 1.6 � 10�4 dynes to rupture a single bond and
there are approximately 1015 such bonds per cm2

—then it represents a
stress of:

stressð Þmax ¼
Fextð Þmax

bond
1015bonds

cm2

� �
¼ 1:6� 10�4dynes

bond

� �
1015bonds

cm2

� �
¼ 1:6� 1011

dynes
cm2

Conversion to GPa becomes:

1:6� 1011
dynes
cm2

0:1N=m2

1dyne=cm2

� �
1Pa

1N=m2

� �
¼ 1:6� 1010Pa ¼ 16GPa:

A tensile strength σTS ¼ 16 GPa, calculated using our atomistic model, is
significantly higher than the typical σTS ¼ 1–2 GPa observed during testing of
high strength steels. This is because, in real/macroscopic materials, crystalline
defects (e.g., vacancies, dislocations, grain boundaries, etc.) exist in polycrystalline
materials; these naturally occurring defects can dominate the onset of yielding and
the ultimate tensile strength of the material. Dislocations can reduce the ultimate
tensile strength of a material by at least one order of magnitude.

5 Important Defects Influencing Material Properties

There are three important metal defects that we will discuss: vacancies, dislocations,
and grain boundaries. These defects can dominate the electrical, mechanical, and
electrochemical properties of the material. Understanding their roles in the materials
can have important reliability implications.
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5.1 Vacancies

A vacancy is illustrated in Fig. 13.8. The vacancy is simply a vacant lattice site in an
otherwise normal matrix. As such, it is usually referred to as a point defect. Note that
the vacancy might be thought of as a fundamental unit of free space in the normal
lattice with a volume size of Ω. As discussed in Chap. 11 (see stress migration), the
vacancy can move under the presence of stress gradients.4 The force acting on a
vacancy can be written as

~F ¼ �Ω~∇σ, ð13:19Þ

where ~∇σ is the stress gradient and it is a vector quantity. The negative sign in the
previous equation is needed because vacancies tend to move from regions of relative
tensile stress to regions of relative compressive stress. By relative, it is meant that
vacancies may also move from regions of higher tensile stress to regions of lower
tensile stress. Vacancy movement from regions of lower compressive stress to
regions of higher compressive stress can also occur.5

A divergence in vacancy movement can lead to voiding. The reliability impact of
vacancy movement was discussed under stress migration in Chap. 11. One should
always keep in mind that atom flow is opposite to the direction of vacancy flow and
can be an important stress-relief mechanism.

Fig. 13.8 A vacancy
(vacant lattice site) is shown
in an otherwise normal
lattice. The vacancy
represents a point defect in
the lattice and it has an
amount of free space Ω
associated with
it. Movement of such
vacancies, due to stress
gradients, and eventual flux
divergencies can lead to
vacancy-clustering
(void growth) and a
weakening/ degradation of
the material

4The stress gradient is given by: ~∇σ ¼ bx ∂
∂x

þ by ∂
∂y

þ bz ∂
∂z

� �
σ x; y; zð Þ:

5Atom movement is opposite to vacancy movement. Atoms tend to move from relative compressive
regions to relative tensile regions. Such atom movement tends to reduce both the relative compres-
sive stress and the relative tensile stress. Atom (or vacancy) movement due to stress gradients is a
stress-relief mechanism.
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Example Problem 4
Assuming the formation/creation energy for a vacancy is (ΔH0)formation ¼ 1.0
eV, estimate the vacancy density in a single-crystal piece of Cu at 500 �C.

Solution
The density of Cu atoms ρatoms is given by:

ρatoms ¼
NAρCu

AtomMassð ÞCu
¼ 6:02� 1023atoms=mole
� 	

8:6g=cm3ð Þ
63:5g=mo1e

¼ 8:2� 1022atoms=cm3:

The Boltzmann probability for vacancy formation gives:

ρvacancies ¼ ρatomsexp � ΔH0ð Þformation

KBT

� �
:

With (ΔH0)formation ¼ 1.0 eV and T¼ 500 �C¼ 773 K, the vacancy density
becomes:

ρvacancies ¼ 2:5� 1016=cm3:

5.2 Dislocations

An edge dislocation is illustrated in Fig. 13.9 and it is usually referred to as a linear
defect (extending into and out of the plane of atoms shown). The edge dislocation is
created when an extra partial plane of atoms is introduced into an otherwise normal
lattice. These dislocations can move under shear stress. As the dislocations move
under shear stress, they carry mass with them since the dislocation represents an extra
partial plane of atoms. Thus, dislocation movement permits mass flow (creep) to
occur at much lower values of stress than would be predicted for a defect-free lattice.

For the edge dislocation to move (and thus to carry mass with it), a shearing stress
must be developed along a slip plane direction. Slip planes are high specific density6

planes such as (111) planes in a face-centered cubic lattice. Dislocations tend to
move with relative ease along these slip planes under a shearing-type stress. Even
though a tensile stress may be applied to a material, a shearing stress can also
develop as illustrated in Fig. 13.10.

The external force shown in Fig. 13.10 serves to put the material in a tensile-stress
condition given by: σ ¼ F/A. However, the external force also serves to produce a

6Specific density represents the number of atoms per unit area.
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shearing force of: F sinθ acting over the heavily shaded area A/cosθ. Thus, the
shearing stress τ becomes:

τ ¼ F sin θð Þ
A= cos θð Þ ¼ σ sin θð Þ cos θð Þ: ð13:20Þ

It can be easily shown that the maximum shear stress τmax occurs for θ¼ 45�, thus
giving τmax ¼ σ/2. As the edge dislocation moves along slip planes (illustrated in
Fig. 13.11) under a shear stress, it carries this extra partial plane of atoms with
it. Thus, dislocation movement under mechanical shear stress can serve as an
important mass-flow mechanism—and important mechanism for creep. This leads
to creep occurring at much lower values of mechanical stress than would be expected
from a perfect lattice.7 Dislocations can thus be thought of as carriers of mass,
permitting material flow from one region to another and bringing about plastic

Fig. 13.9 Edge dislocation
is illustrated. Note that the
edge dislocation represents
an extra partial plane of
atoms (extending into and
out of the plane shown) that
has been introduced into an
otherwise normal lattice

Fig. 13.10 The external
force shown produces a
tensile stress σ in the
material but it also produces
a shearing stress τ along the
elevated plane as illustrated.
The maximum value of the
shearing stress occurs for θ
¼ 45�, giving a maximum
shear stress of τmax ¼ σ/2

7Other dislocation types can exist, such as screws dislocations (not discussed here). These can also
be important in the mass-flow/creep process.
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deformation in the material. Strengthening mechanisms in metals, such as steel, are
normally associated with reducing the relative ease of dislocation movement. For
example, the addition of relatively small amounts of carbon to iron can serve to pin
the dislocation movement and convert relatively weak iron into strong steel.

Thus far, our analysis has been primarily confined to bond stability under tensile
stress. What happens to the bond under compression? One can see from Fig. 13.5
that, under compression, the external force required to produce an incremental
change in dr increases dramatically (below r0) with no apparent bond breakage/
rupture indicated in the figure. While it is generally true that solids are stronger under
compressive stress, compressive materials will fail (via cracking, buckling, delam-
ination, blistering, etc.). By putting the polycrystalline material under compression,
dislocation movement is again possible, leading to a mass transfer (plastic deforma-
tion). One must remember—what gives the bond stability is its negative bond energy
(�ϕBE). The bond is no longer stable when the work ΔW done by the external force
is greater than ϕBE. Therefore, all bond stability is lost when:

ΔW ¼
ðrfracture

r0

Fext dr 	 ϕBE: ð13:21Þ

Similar to our use of tensile strength σTS, a crushing strength σCS can also be
determined by loading the material under compression. For metals (or any material
which can show plastic deformation) the tensile strength and crushing strength are
roughly the same. However, for brittle materials such as ceramics, the crushing
strength may be as much as 15� greater than the tensile strength. This is because the
failure mechanism is quite different in ceramic materials under tension versus
compression. Whereas a single crack can dominate the failure mechanism (rapid
crack propagation) under tension, numerous cracks tend to develop under compres-
sion and seem to mitigate the erratic/rapid propagation with a single crack. Whereas
cracks tend to propagate perpendicular to the tensile stress axis, cracks tend to
propagate parallel to the compressive-stress axis. Even if the time-zero crack

Fig. 13.11 Under tensile
loading, the maximum shear
stress will develop along
planes at 45� to the tensile
stress. Dislocations on a slip
plane close to this direction
can propagate due to the
shearing stress. Dislocation
movement results in a mass
transfer bringing about
plastic deformation within
the material (creep)
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formation is not parallel to the compressive-stress axis, it is likely to twist out of its
initial orientation to an orientation parallel to the compressive stress axis. The fact
that many cracks tend to form in brittle materials under compressive stress can be
used to make fine powders from a much larger piece of the brittle material.

5.3 Grain Boundaries

Grain boundaries can often play extremely important roles in the reliability of a
material. Many materials (especially metals/conductors) are polycrystalline. Poly-
crystalline is a term used in materials science to describe solid materials which
consist of many tiny single-crystals, called grains, coexisting in the solid material. At
the region between grains, the grain boundary, the two grains may be poorly
matched in specific density (often referred to as lattice mismatch) and this can
sometimes lead to weaker-bonded interfaces.

Figure 13.12 illustrates the specific density of atoms for two crystalline planes,
(100) and (110), for the face-centered cubic crystalline structure. The number of
enclosed atoms for both cases is the same: 1 + 4(1/4) ¼ 2 atoms for the (100) plane
and 2(1/2) + 4(1/4) ¼ 2 atoms for the (110) plane. However, the areas are different.
This causes the specific density for the (100) plane to be higher than the (110) plane.
Thus, if these two planes were brought together to form a grain boundary, then there
would be mismatch in specific densities of atoms (lattice mismatch).

Figure 13.13 illustrates the mismatch that can happen when two grains of
different orientations and different specific densities are brought together for joining/
bonding. For large specific-density differences at the g-b interface between the two

a

a

(100) Plane

a

a√2

(110) Plane

Planar Density
(2 atoms)/(a2√2)

Planar Density
(2 atoms)/a2

Fig. 13.12 Specific density of atoms is illustrated for (100) and (110) planes in the face-centered
cubic crystalline structure. One can see that the specific density of atoms in the (100) plane is greater
than in the (110) plane. Thus, if two such interfaces formed the bonding interface, a mismatch in
specific density of atoms would occur. This mismatch can lead to dangling and/or severely bent
bonds
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grains, the two grains will be poorly matched resulting in a g-b interface with a
relatively high density of dangling and/or stretched bonds. This causes the g-b free
energy to increase, relative to the normal-bonding state, and this causes the g-b to
become generally weaker and less stable than the grains. The g-bs with large
mismatch introduce considerable free space into an otherwise normal lattice and
can thus serve as a site for impurity precipitation. Also, the g-bs can serve as prime
locations for: crack formation, crack propagation, higher corrosion activity, and
higher diffusion rates.

Since poorly matched grain boundaries have much higher free energy versus
the better matched ones, then, during high temperature annealing, the grains with
preferred orientations will tend to grow at the expense of some of the other
grains. This grain growth, in order to minimize the number of high free-energy
grain boundaries, will tend to minimize the total number of grain boundaries,
i.e., the average grain size increases during annealing. Of course, the grain
growth during high temperature annealing will also be subject to any mechanical
stresses that might be present (or generated) in the material during the annealing
process.

Fig. 13.13 When the two grains A and B are joined along the grain boundary (g-b) interface, a
mismatch in specific density of atoms at the interface can result in a large number of dangling and/or
stretched bonds along this g-b interface. This causes the g-b free energy to increase above the
normal-bonding value and thus causes the g-b to become less stable. This means that g-bs can be
prime locations for: enhanced crack propagation, higher corrosion activity, higher impurity precip-
itation, higher diffusion rates, etc.
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6 Fracture Strength of Materials

The facture strength (or toughness) of a material is generally found by recording the
strain as the stress is increased (ramped) to failure. The ramp-stress-to-failure/
rupture test8 is an important mechanical test for several reasons: (1) it is a time-
zero test of relatively short duration, (2) it is a relatively easy test to perform, and
(3) it can be a strong indicator of the reliability of such materials/devices.9 A major
downside with ramp-stress-to-failure testing is that it is a destructive test. Thus,
ramp-stress-to-failure testing can only be used on a sampling basis (for a few
materials/devices that were randomly selected for the test). The reliability of the
remaining population must be statistically inferred, as discussed in Chap. 17.

A ramp-stress-to-failure/rupture test is normally used to gather the indicated data
that is illustrated in Fig. 13.14. As the stress increases from the zero-strain state, the
stress depends linearly on the strain and this continues up to the yield point

σY ¼ EεY. Above the yield point, the stress depends on the strain in a more
complicated fashion (a power-law):

σ ¼ EE ε < εYð Þ ð13:22aÞ

and

σ ¼ B0ε
n ε > εYð Þ: ð13:22bÞ

X

Strain:ε 

St
re

ss
: σ

σY=EεY

Toughness

Fracture

σ =EεY(ε/εY)n
σ =Eε

Fig. 13.14 The fracture/
rupture strength is
determined by ramping up
the stress (at some specified
rate) and monitoring the
strain until fracture/rupture
occurs. The toughness is the
area under the curve

8The ramp-to-failure/rupture test is described in detail in Chap. 11.
9The usefulness of ramp-voltage-to-breakdown test for capacitor dielectrics is highlighted in Chap.
12.
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By matching the two equations at εY, one obtains:

σ ¼ EE ε 
 εYð Þ ð13:23aÞ

and

σ ¼ EεY
ε

εY

� �n

ε 	 εYð Þ: ð13:23bÞ

Generally, n ¼ 0.1–0.5 is observed for many materials.
The material toughness is given by the area under the stress-stain (σ - ε) curve:

Toughness ¼
ðεfracture

0

σdε ¼ E

ðεY
0

εdεþ EεY

ðεfracture

εY

ε

εY

� �n

dε: ð13:24Þ

Example Problem 5
The stress-strain curve for a material with modulus of E ¼ 600 GPa is very
similar to that shown in Fig. 13.14. If the elastic-strain region extends to a level
of 1.5 % and the fracture strain is 30 %, then calculate the toughness for this
material. Assume that the power-law model, which describes the stress versus
strain relation in the plastic region, is given by n ¼ 0.25.

Solution

Toughness¼
ðεfracture

0

σdε ¼ E

ðεY
0

εdεþ EεY

ðεfracture

εY

ε

εY

� �n

dε

¼ E
ε2y
2

" #
þ E εy

� 	1�n
ðεfracture

εY

εndε

¼ E
ε2y
2

" #
þ εy
� 	1�n εfractureð Þnþ1 � εy

� 	nþ1

nþ 1

" #( )

¼ 600GPa
0:015ð Þ2

2
þ 0:015ð Þ0:75 0:30ð Þ125 � 0:015ð Þ125

1:25

" #( )
¼ 4:5GPa

¼ 4:5GPa
109N=m2

1GPa

� �
1J
1Nm

� �
1eV

1:6� 10�19J

� �
1m

100cm

� �3

¼ 2:8� 1022eV=cm3:

(continued)
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In Problem 1 of Chap. 4, it was shown that ~1023 atoms/cm3 exist in most
dense solids. Therefore, the toughness represents only a few tenths of
eV/atom, significantly lower than the bond energy per atom. This is because
of intrinsic lattice defects (vacancies, dislocations, grain boundaries, etc.)
existing in the materials.

7 Stress Relief in Materials

From the discussions in this chapter, one should now clearly understand that the
bonding energy of a solid material is negative and reaches its lowest value when the
bonded atoms are in their equilibrium state (non-stretched or non-compressed state).
Mechanically stressing the material, either by stretching or compressing the bonds,
serves to raise the total energy of the material, making the material less stable and
more prone to degradation and eventual failure. Therefore, materials will tend to
look for ways of relaxing the mechanical stress σ (e.g., vacancy movement, dislo-
cation movement, cracking, buckling, delamination, etc.). These are all important
stress-relief mechanisms.

The time dependence of the stress relief, as illustrated in Fig. 13.15, generally
takes the form:

dσ
dt

¼ �k σ � σYieldð Þ, ð13:25Þ

where k is a stress-relaxation rate constant and σyield is the yield stress. Below the
yield stress, it is assumed that little/no relaxation is possible and the material will
show elastic behavior (no further degradation with time). Separation of variables and
integration of Eq. (13.25),

ðσ
σMax

dσ
σ � σYieldð Þ ¼ �k

ðt
0

dt, ð13:26Þ

Time

σYield

tRelax

σ(t)

σMax

Fig. 13.15 General stress-
relaxation curve is
illustrated. Stress relaxation
may take many forms:
vacancy movement,
dislocation movement,
voiding, cracking, buckling,
delamination, etc.
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gives:

σ tð Þ ¼ σYield þ σMax � σYieldð Þexp �ktð Þ: ð13:27Þ

Solving Eq. (13.27) for the time-to-relax (t ¼ tRelax), one obtains:

tRelax ¼ � 1
k

� �
ln

σ t ¼ tRelaxð Þ � σYield
σmax � σyield

� �
: ð13:28Þ

The time for the stress [σ(t ¼ tRelax) - σyield] to relax, to one-half of its original
value [σmax � σyield], is given by10:

tRelax ¼ ln 2ð Þ
k

� �
: ð13:29Þ

Stress relaxation can take on several materials-degradation forms: creep, voiding,
cracking, delamination, blistering, buckling, etc. The stress relaxation process will
continue until the mechanical stress level (originally above the yield strength of the
material) relaxes to the yield strength of the material. The yield stress may be quite
high and rather precisely defined for some materials (steel) but low and poorly
defined for others (aluminum). For brittle materials, such as ceramics, crack forma-
tion and propagation may be the only effective stress-relief mechanism available.

8 Creep-Induced Failures

One of the more important failure mechanisms for mechanical systems is creep-
induced failure. Creep can refer to an increase in strain with time for a fixed load
(constant stress).11 However, creep can also refer to stress relaxation for a fixed
strain. Either type of creep can produce material degradation as illustrated in
Fig. 13.16 and eventual device failure in certain applications.

8.1 Creep Under Constant Load/Stress Conditions

Creep under a constant load (constant stress) is shown in Fig. 13.17. When
the material is exposed to an applied stress σ, the time-zero strain that occurs is:

10Recall from Chap. 9, one expects the relaxation-rate constant to be thermally activated:
k ¼ k0 exp [�Q/(KBT)].
11The load/force is constant. The average stress is only approximately constant during testing due to
some expected cross-sectional area changes.
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ε ¼ (L - L0)/L0. If the applied stress (which is assumed to be beyond the material’s
elastic-region/yield-point) is held constant, then strain will increase with time: ε(t)¼
[L(t) - L0]/L0.

A typical creep curve is shown in Fig. 13.18. After an initial period of nonlinear
creep, the creep shows an extended period of linear behavior and then, eventually, a
shorter period of rapid turn-up and material rupture. Also, one can see in Fig. 13.19
the creep rate depends on the stress level in the material and the temperature (creep is
thermally activated). Generally, creep can be an issue for metals when the use
temperature is above 40 % of the melting temperature: Tcreep > 0.4 Tmelt, where
temperatures must be expressed in Kelvin. For example, aluminum melts at 660 �C
(933 K). Therefore, creep in Al could become an issue for

Creep-Induced Failure

G1

G2

ΔG*

ΔG

Reac�on Coordinates

Fr
ee

 E
ne

rg
y

Stressed Material

Degraded Material

Fig. 13.16 When a
mechanical stress is applied
to a material, the material
can become metastable with
a driving force (ΔG)
favoring the degraded state.
However, the rate of the
degradation (creep) is
limited by the activation
energy (ΔG*) which is
generally associated with
dislocation movement along
the slip planes

Fig. 13.17 Creep behavior under a fixed load (constant stress). (a) At time zero, the length of the
material is L0. (b) Immediately after a stress σ is applied, the strain is: ε ¼ (L � L0)/L0. (c) If the
applied stress σ (assumed to be above the materials yield-point) is held constant, then the strain ε(t)
¼ [L(t) � L0]/Lo] will increase with time. Creep, under constant load, is usually referred to as an
increase in strain with time for a fixed stress
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Tcreep > 0.4(933 K) ¼ 373 K ¼ 100 �C.12

In the linear creep region (steady-state creep region), the creep as a function of
time is given by:

ε tð Þ ¼ ε0 þ dε
dt

� �
t: ð13:30Þ

From the previous equation, one can see that the creep rate (dε/dt) is of primary/
fundamental importance and becomes the focus of our attention. The creep can
continue until a time-to-failure is reached. Time-to-failure (TF) will occur when the
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Fig. 13.18 Typical creep
behavior for ductile
materials is illustrated
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Fig. 13.19 Creep rate dε/dt
increases with stress. Creep
rate is also thermally
activated

12Recall, from Chap. 11, that the stress-migration/creep bakes for aluminum were generally done at
temperatures above 100 �C.
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total creep becomes too large for specified tolerances (or the material fractures/
ruptures) at t ¼ TF, giving:

TF ¼ ε t ¼ TFð Þ � ε0
dε=dtð Þ

� �
: ð13:31Þ

One can see from the previous equation that the time-to-failure is directly
proportional to the amount of creep that can be tolerated and with a simple
inverse-dependence on creep rate (since the creep rate is constant in the linear
creep region).

For the information shown in Fig. 13.19, one can see that the creep rate (dε/dt)
depends on both the level of stress and the temperature (thermally activated). Thus,
the creep rate can be written as

dε
dt

¼ B0 σ � σyield
� 	n

exp � Q

KBT

� �
: ð13:32Þ

Since the creep rate (degradation rate) for constant stress σ takes the above form,
then the time-to-failure equation can be easily extracted:

ðεcrit
0

dε ¼ B0 σ � σyield
� 	n

exp � Q

KBT

� �� � ðTF
0

dt, ð13:33Þ

giving,

TF ¼ A0 σ � σyield
� 	�n

exp
Q

KBT

� �
: ð13:34Þ

Note that the kinetics (n,Q) for creep rate dε/dt and time-to-failure TF are the same,
except for a change of sign. This is because the creep is assumed to increase linearly
with time (creep rate is constant). As before, A0 is a material/process-dependent
coefficient that depends on the total amount of creep that can be tolerated. A0 can
vary from device to device and generally results in a lognormal orWeibull distribution
of times-to-failure. Often, the time-to-failure stress dependence is described by n¼ 1–3
for relative soft/weak materials (e.g., Pb-alloy solders and viscous glasses), n¼ 3–6 for
strong metals (e.g., mild steels and many inter-metallic formations) and n ¼ 6–9 for
very strong/brittle materials (e.g., hardened steels and ceramics).

One should be cautioned against taking creep-rate data under very high-stress/
high-temperature test conditions and then extrapolating to very low-stress/low-
temperature operational conditions using the same kinetic values (n, Q). Generally,
when creep testing above T > 0.5 Tmelt one my observe different values for n and
activation energy Q than when creep testing at temperatures T < 0.5 Tmelt. One needs
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to ensure that the extrapolations from stress to use conditions are not too optimistic.
This caution is emphasized in Example Problem 6.

Example Problem 6
Creep-rate (dε/dt) data was collected for a given metal alloy. The tensile stress
and temperature conditions during testing are indicated in the Table 13.3. For
this particular metal alloy, the yield strength is very low (relative to the stress
conditions used) and therefore can be neglected.

(a) Determine the activation energy Q and the stress dependence exponent
n that produce the best fitting for the accelerated data for this metal alloy.

(b) Construct the time-to-failure equation for this metal alloy.
(c) Construct the acceleration factor equation for this metal alloy.
(d) If a mechanical component (made of this metal alloy) fails in 2 h at a tensile

stress level of 1.9 MPa and a temperature of 380 �C, how long would the
component be expected to last at 1.25 MPa and a temperature of 310 �C?

(e) How long would the component be expected to last at a tensile stress level
of 0.5 MPa and a temperature of 250 �C?

Solution
The creep rate equation is given by:

dε
dr

¼ B0 σð Þnexp � Q

KBT

� �
:

Taking the natural logarithm of both sides of the equation yields:

Ln dε=dtð Þ ¼ Ln B0ð Þ þ nLn σð Þ � Q

KBT
:

Thus, the activation energy for the creep is given by,

Q ¼ �KB
∂Ln dε=dtð Þ
∂ 1=Tð Þ

� �
σ¼constant

,

and the creep exponent n is given by:

(continued)

Table 13.3 Creep-rate
(dε/dt) data for a metal alloy

Temperature

Stress (Mpa) 400 �C 450 �C 500� C
1.0 0.001/h 0.01/h 0.1/h

1.5 – 0.05/h –

2.0 – 0.16/h –
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n ¼ ∂Ln dε=dtð Þ
∂Ln σð Þ

� �
T¼constant

¼ ∂Log dε=dtð Þ
∂Log σð Þ

� �
T¼constant

:

(a) The plot of Ln(dε/dt) versus (1/T ) is shown in Fig. 13.20 for the constant
stress condition of 1 MPa. [Reminder: one must always convert the
temperature from degrees centigrade (�C) to Kelvin (K).]

From the slope of the previous plot, one obtains:

Q ¼ �KB
∂Ln dε=dtð Þ
∂ 1=Tð Þ

� �
σ¼constant

¼ 2:06eV:

The log–log plot of creep rate (dε/dt) versus stress (σ) is shown in
Fig. 13.21 for the constant temperature condition of 450 �C¼ 723 K.From
the previous plot one obtains the creep power-law exponent n:

n ¼ ∂Ln dε=dtð Þ
∂Ln σð Þ

� �
T¼constant

¼ ∂Log dε=dtð Þ
∂Log σð Þ

� �
T¼constant

ffi 4:0:

(b) The time-to-failure equation for this metal alloy is given by:

TF ¼ A0 σð Þ�4exp
2:06eV
KBT

� �
:

(c) The acceleration factor for this metal alloy use conditions is:

AF ¼ TFð Þ1
TFð Þ2

¼ σ2
σ1

� �4

exp
2:06eV
KB

1
T1

� 1
T2

� �� �
:

(d) The acceleration factor becomes:

AF¼ 1:9MPa
1:25MPa

� �4

exp
2:06eV

8:62� 10�5eV
K

1
310þ 273ð ÞK� 1

380þ 273ð ÞK
� �264

375
¼ 5:34ð Þ 81:0ð Þ ¼ 432:5:

The time to failure becomes:

TF1:25MPa,310oC ¼ AF � TF19MPa,380oC ¼ 432:5ð Þ � 2hð Þ ¼ 865h:

(continued)
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(e) Note that the proposed use conditions (0.5MPa, 250 �C) are well below the
regions where accelerated data was actually taken (see the previous table).

Optimistic approach: assume that the kinetics (n¼ 4, Qcreep ¼ 2.06 eV) are
valid throughout the full range of stresses and temperatures, giving:

AF¼ 1:9MPa
0:5MPa

� �4

exp
2:06eV

8:62� 10�5eV
K

1
250þ 273ð ÞK� 1

380þ 273Kð Þ
� �264

375
¼ 208:5ð Þ 8926:6ð Þ ¼ 1:86� 106:

The time-to-failure becomes:

TF0:1MPa,200oC ¼ AF � TF1:9MPa,380oC ¼ 1:86� 106
� 	 � 2hð Þ ¼ 3:72� 106h

¼ 3:72� 106h
1year
8, 760h

� �
¼ 425years:

Conservative approach: assume that the kinetics (n ¼ 4, Qcreep ¼ 2.06 eV)
are valid over the region where actual data is available and then use more
conservative kinetic values (n ¼ 2 and Qcreep ¼ 1.0 eV) below this region.

AF ¼ 1:9MPa
1:0MPa

� �4

� 1:0MPa
0:5MPa

� �2

� exp 2:06eV

8:62� 10�5eV
K

1
300þ 273ð ÞK� 1

380þ 273ð ÞK
� �264

375

� exp 1:0eV

8:62� 10�5eV
K

1
250þ 273ð ÞK� 1

300þ 273ð ÞK
� �264

375
¼ 13:03ð Þ � 4ð Þ � 165:6ð Þ � 6:93ð Þ ¼ 5:98� 104:

Using this more conservative approach, the time-to-failure becomes:

TF0:5MPa,250oC ¼ AF � TF19MPa,380oC ¼ 5:98� 104
� 	 � 2hð Þ ¼ 1:20� 105 h

¼ 1:2� 105 h
1year
8, 760h

� �
¼ 13:7years:
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Example Problem 7
Shown in Fig. 13.22 is a mechanical rotor that must rotate continuously at
2,500 revolutions per minute (rpm). A heavy mass (0.5 kg) is attached to the
end of an aluminum connecting rod (10 cm long, cross sectional-area 1 cm2).
The mass of the connecting rod is negligible compared to the heavy mass on
the end. The designer is worried that the tensile stress in the small diameter
connecting rod (during 2,500 rpm operation) may be excessive and creep will
eventually cause the large mass to come into contact with the cylindrical walls
causing the component to freeze up (fail). To test his hypothesis, the engineer
decided to use accelerated testing and subjected the component to accelerated

(continued)
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Fig. 13.21 Log–Log plot of creep rate (dε/dt) versus stress (σ) is shown
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operation at 8,000 rpm for an extended period of time. The component failed
in 18 h, because of creep, i.e., the large revolving mass started to rub the
cylindrical wall (Δr ¼ Δx) after 18 h under these accelerated conditions.
Assuming the following material properties for the aluminum-alloy
connecting rod: tensile strength σTS ¼ 0.6 GPa, modulus E ¼ 75 GPa, a
negligible yield point, and a stress dependence power-law exponent of n ¼ 4.

(a) Find the stress in the aluminum component during 8,000 rpm accelerated
operation.

(b) Find the stress in the aluminum component for the expected normal
2,500 rpm operation.

(c) Given that the aluminum component lasted 18 h at 8,000 rpm, how long
would the component last during normal operation at 2,500 rpm?

Solution

(a) Due to circular motion, tensile stress in constant in the aluminum-alloy rod
and is given by:

σT , 8,000 rpm ¼ Fr

A
¼ Mrω2

1cm2

¼ 0:5kgð Þ 0:1mð Þ 2π 8; 000rpmð Þ 1min=60sð Þ½ �2
1cm2

100cm
1m

� �2

¼ 0:351� 109N=m2 ¼ 0:351GPa

With no yield point, creep is expected at 8,000 rpm.
(b) At 2,500 rpm, the tensile stress would be:

σT , 2,500 rpm ¼ ωuse

ωaccelerated

� �2

σT , 8, 000 rpm ¼ 2,500
8,000

� �2

0:351GPað Þ

¼ 0:034Gpa:

(c) The acceleration factor is:

AF¼ TF@2,500 rpm

TF@8,000 rpm
¼ σT , 8, 000 rpm

σT , 2, 500 rpm

� �4

¼ ω2
@8,000 rpm

ω2
@2,500 rpm

 !4

¼ 8000
2500

� �8

¼ 1:1� 104:

(continued)
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Therefore, for 2,500 rpm operation, then one would expect the component
to last:

TF@2,500 rpm 	 AF � TF@8,000 rpm ¼ 1:1� 104
� 	

18hð Þ ¼ 198, 000h

¼ 198, 000h
1year
8, 760h

� �
¼ 22:6years:

Note that the AF depends on the 8th power of the angular speed. Hopefully,
one can start to better understand why mechanical components in an engine
tend to fail much faster under engine race conditions (8,000+ rpm) versus
normal auto driving conditions (2,500 rpm).

8.2 Creep Under Constant Strain Conditions

Creep under a constant strain is shown in Fig. 13.23. When the material is exposed to
an applied stress σ (assumed to be above the material’s yield point), the time-zero
strain that occurs is: ε ¼ (L � L0)/L0.

If the strain is held constant and the stress is monitored with time, then the stress
σ(t) will relax with time—the force per unit area needed to hold the fixed strain in the
material will reduce with time. General features of stress relaxation were discussed
earlier, see Fig. 13.15, but we would like to take a closer look at stress relaxation
under the condition of constant strain.

The total strain can be written in terms of the elastic (recoverable) part plus the
plastic (permanent deformation) part:

εtotal ¼ εelastic þ εplastic: ð13:35Þ

Fig. 13.22 Mechanical
rotor is designed to rotate at
an angular speed of ω. The
rotor consists of a heavy
massM that is constrained to
rotate by a light Al-alloy
connecting rod. The
tolerance Δx is the free
space between the mass and
the cylinder walls. If
significant creep with time
occurs in the aluminum rod,
the mass will make contact
with the cylinder walls and
the rotor will fail (freeze up)

258 13 Time-to-Failure Models for Selected Failure Mechanisms in Mechanical Engineering



For stress relaxation, where the total strain remains constant, then

dεtotal
dt

¼ 0 ) dεplastic
dt

¼ � dεelastic
dt

¼ �1
E

dσ
dt

: ð13:36Þ

Creep occurs because of plastic deformation, therefore:

dεplastic
dt

¼ A0 σ � σyield
� 	n

exp
�Q

KBT

� �
: ð13:37Þ

For constant strain, one can use Eq. (13.35) to write:

dεplastic
dt

¼ � dεelastic
dt

¼ �1
E

dσ
dt

¼ B0 σ � σyield
� 	n

: ð13:38Þ

Separating variables in Eq. (13.38) and integrating, one obtains:

ðσ
σmax

dσ

σ � σyield
� 	n ¼ �B0E

ðt
0

dt: ð13:39Þ

For n ¼ 1, the previous equation reduces to Eq. (13.27):

σ tð Þ � σyield ¼ σmax � σyield
� 	

exp �kt½ �, ð13:40Þ

where k is the relaxation rate constant, k¼ B0E. If we define TF as the stress level
at which [σ(t ¼ TF) – σyield] becomes some fraction f of [σmax � σyield], then:

Fig. 13.23 Illustration of
creep under a fixed strain.
(a) At time zero, the length
of the material is L0. (b)
Immediately after a stress σ
is applied, the strain is: ε ¼
(L � L0)/L0. (c) If the strain
is held constant, then the
stress σ(t) will be a function
of time. Creep at constant
strain is referred to as stress
relaxation. The time
dependence of the stress
relaxation is expected to be
similar to that shown in
Fig. 13.15
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TF¼ �1
k
ln fð Þ

¼ � ln fð Þ
k0

exp
Q

KBT

� �
,

ð13:41Þ

where we have used the expectation from Chap. 8 that the relaxation rate constant
will be thermally activated and given by,

k ¼ k0exp � Q

KBT

� �
: ð13:42Þ

For values of n 6¼ 1, one obtains from Eq. (13.39):

1

σ tð Þ � σyield

 �n�1 �

1

σmax � σyield

 �n�1 ¼ n� 1ð Þkt: ð13:43Þ

Again, if one defines TF as [σ(t ¼ TF) – σyield] ¼ f [σmax � σyield], then:

TF¼ 1

k n� 1ð Þ σmax � σyield

 �n�1

1� f n�1

f n�1

� �

¼ 1

k0 n� 1ð Þ σmax � σyield

 �n�1

1� f n�1

f n�1

� �
exp

Q

KBT

� �

¼ A0 σmax � σyield
� 	� n�1ð Þ

exp
Q

KBT

� �
:

ð13:44Þ

At first glance, stress relaxation might be thought to be a good thing—lower
stress is good, right? No, not always. Many fasteners (e.g., nuts and bolts) may rely
on very high stress levels to properly clamp things into place. This is why one
generally wants to snug up a nut on a bolt during the assembly of mechanical
components so that the nut and bolt will serve as an adequate clamp for the
components (so that they will be held tightly in place). In a critically important
clamping application, one does not want the stress in the materials to relax. This is
illustrated in Example Problem 8.

Example Problem 8
Three mechanical components are fastened/clamped using a nut and bolt as
illustrated in Fig. 13.24. During the initial stage of tightening of the nut, free
space is simply being eliminated between the nut and the various members as
shown. Once the free space is eliminated, then the tensile stress rises rapidly in
the bolt shaft with each turn of the nut. Due to the pitch of the threads on the
bolt, during each turn of the nut (after free space elimination), the length of
unstressed bolt region (above the nut) increases by 0.4 % for each complete

(continued)
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turn of the nut. The properties of the mild steel used in bolt and nut fabrication
are: modulus E ¼ 200 GPa, tensile yield strength σY ¼ 0.2 GPa, tensile
strength σTS ¼ 0.5 GPa, and a power-law creep exponent of n ¼ 4. To make
sure that the members are properly clamped, the nut is tightened to a tensile
level of 0.4 GPa in the bolt and the level of stress must stay above 0.25 GPa for
adequate clamping.

(a) Immediately after the free space elimination between nut and members,
estimate the tensile stress in the bolt with each additional 1=4 turn of the nut.

(b) If we assume that most of the stress relaxation occurs within the shaft of
the bolt, as opposed to the other materials, then if the stress in the bolt
relaxes from 0.4 to 0.35 GPa in 1 year, how long will it take for the stress
to relax to 0.25 GPa?

Solution

(a) Assume that the bolt is initially in the elastic region. Since a single turn of
the nut produces a strain of 0.004 in the bolt, then the 1=4 turn will produce a
strain of 0.001. The tensile stress σ in the bolt associated with this level of
strain (ε ¼ 0.001) is:

σ ¼ Eε ¼ 200 GPað Þ 0:001ð Þ ¼ 0:2 GPa:

(b) First we must determine the relaxation rate constant k. Assuming a creep
power-law exponent of n ¼ 4, one obtains:

k¼ 1
3t

1

σ tð Þ3 �
1

σ3max

" #

¼ 1
3 1yearð Þ

1

0:35 GPað Þ3 �
1

0:4 GPað Þ3
" #

¼ 2:57

GPað Þ3year:

Thus, the time-to-relax to a value of 0.25 GPa becomes:

t¼ 1
3k

1

σ tð Þ3 �
1

σ3max

" #

¼ 1

3
2:57

GPað Þ3year

 ! 1

0:25 GPað Þ3 �
1

0:4 GPað Þ3
" #

¼ 6:3years:
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Let us now turn our attention to what is happening to the metal inside the shaft of
the bolt. As the tensile stress in the shaft of the bolt relaxes, the bolt loses some of its
clamping effectiveness. This stress relaxation necessitates a continual tightening of
the nut to maintain proper clamping. Let us suppose that every six months the nut
must be turned one-quarter of a turn in order to return the shaft of the bolt back to its
original tensile stress level (which restores its original clamping effectiveness). With
each complete turn, the nut (due to the pitch of the threads on the bolt/nut) results in
0.4 % of the mass (originally in the shaft) now being above the top of the nut. Since
the mass of the bolt above the top of the nut is virtually in a stress-free state then,
effectively, 0.4 % of the metal in the shaft of the bolt will transfer/flow from the high
stress shaft region of the bolt to a lower stress region above the nut every two years.
Since this is a mass-conserving process, then the density of the metal in the shaft
must be reducing with time (due to the flux divergence effect discussed in Chap. 4).
This reduction in density of the metal in the shaft with time normally results in void
formations along grain boundaries which are roughly perpendicular to the axis of the
shaft, as illustrated in Fig. 13.25.

The previous example (voiding in the shaft of a bolt under tension) serves to
illustrate a very important point: atoms will flow from regions of higher stress to
regions of lower stress so as to reduce the stress-level in the material. However, this
material flow, and resulting flux divergences (as discussed in Chap. 4), can produce
void formations in the material. The mass flow and voiding at temperatures well
below the melting temperature, tend to occur along grain boundaries finally resulting
in failure with time.

Fig. 13.24 Nut and bolt are
used to clamp three
members of a multi-
component system. As the
nut is tightened (to create an
effective clamp) the bolt
shaft comes under a state of
tension while members A, B,
and C are compressed
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9 Crack-Induced Failures

Crack-induced failures can be particularly important because it is difficult to fabri-
cate mechanical devices without at least some micro-cracks developing during
fabrication. Once a crack has developed, the crack may tend to propagate under
loading with crack propagation eventually leading to device failure.

At first thought, the introduction of a small crack would seem to be insignificant.
For example, suppose that one introduces a small thin crack of radius a in a
cylindrical rod of radius R. Further assume that the crack is perpendicular to the
length of the rod which is the tensile-stress axis. Thus, the impact on the average
tensile stress would be:

σT ¼ F

πR2 � πa2
¼ σTð Þ0

1� a

R

� �2 : ð13:45Þ

Thus, the impact of a small crack on the average tensile stress would seem to be
very small if a � R. However, Eq. (13.45) is not valid for reliability assessments of
materials with cracks. To emphasize this, suppose that the initial tensile (σT)0 is well
below the yield strength of the material. With the introduction of a small crack, it is
unlikely that the small crack (a � R) introduction will cause the average tensile
stress σT to increase above the yield strength of the material. Thus, one might come
to the erroneous conclusion that the small crack should have little/ no impact on the
reliability of the cylindrical rod. Our initial reliability assessment of the reliability
impact of the crack is flawed (pardon the pun) because it ignores the stress raisers/
risers at crack tips.

Bolt
Shaft

σTensile

σTensile

Metal
Voiding

Fig. 13.25 For confined
metals under tension, stress
relaxation can result in void
formations along grain
boundaries
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9.1 Stress Raisers/Risers at Crack Tips

Equation (13.45) is not the proper reliability analysis for a crack. While it does
comprehend a small rise in average tensile stress in the rod with crack introduction,
this equation does not comprehend the large stress raiser/riser13 that can occur at the
tips of the crack. This is illustrated in Fig. 13.26, where we look more closely at what
happens to the lines of force when a crack is introduced.

The lines of force before and after a horizontal crack introduction are shown in
Fig. 13.26. Before the introduction of the crack, the lines of force are parallel and
uniform, producing a uniform tensile stress σ (¼F/Area) as illustrated in Fig. 13.26a.
However, after crack introduction, the lines of force are no longer uniform and
parallel as illustrated in Fig. 13.26b.

The higher density of lines of force at the tips of the crack produces a stress raiser
(increase in stress) at the crack tips and a non-uniform stress in the material. At some
distance away from the crack, the lines of force again will become uniform and
parallel. The stress raiser, however, serves to bring the tip of the crack to a stress
level which may exceed the yield stress of the material and thus produces continued
plastic deformation/damage in the material.

Fig. 13.26 (a) Lines of
force are uniform and
parallel initially, producing
a uniform stress of σ ¼
Force/Area. (b) The
introduction of the crack
causes the lines of force to
become non-uniform and
non-parallel (producing a
crowding of force lines at
the crack tip). The higher
density of force lines at the
crack tip produces a stress
riser (much higher stress
level than the uniform stress
level σ) and this may induce
additional crack growth

13Historically, these localized stresses at crack tips have been referred to as either stress raisers or
stress risers. The terms will be used interchangeably.
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Figure 13.27 illustrates a more microscopic (molecular level) view of things. One
can see that the bonds are broken at the site of the crack which tends to increase the
bonding energy. Above the crack, however, the bonds are more relaxed (reducing
the strain energy). Near the crack tip, the bonds are severely strained (raising the
bond energy). This region is often referred to as the plastic region.

Griffith has shown that for brittle materials with an elliptical crack of length 2a
(major diameter) and width 2b (minor diameter) as shown in Fig. 13.27, the stress
raiser σraiser at the tip of the crack is given by:

σraiser ¼ σo 1þ 2
a

b

� �h i
, ð13:46Þ

where σ0 is the uniform stress before crack introduction. A useful term is the
stress concentration factor K given by:

K ¼ σraiser
σ0

¼ 1þ 2
a

b

� �
: ð13:47Þ

Example Problem 9
A cylindrical rod has yield strength of 600 MPa and it is tensile loaded with an
average stress of 400 MPa. If an elliptical crack is introduced with major axis
2a and minor axis 2b, such that the ratio is given by a/b¼ 4, estimate the stress
raiser at the tip of the crack and comment on its reliability impact.

(continued)

Fig. 13.27 Molecular
bonds are shown broken for
the elliptical crack of major
diameter 2a and minor
diameter 2b. The strain
energy, above and below the
crack, has been partially
relieved. Bonds near the
crack tip are severely
strained (plastic region).
Regions well beyond the
crack tip are in the normal
tensile-stressed state
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Solution

σraiser ¼ σo 1þ 2
a

b

� �h i
¼ 400MPa 1þ 2 4ð Þ½ �
¼ 3:6GPa:

Note that the stress at the crack tip (3.6 GPa) is well above the yield strength
(0.6 GPa) of the material and plastic-deformation/damage is expected at the
crack tip; thus, crack propagation is likely. Even for the most forgiving crack
(a spherically shaped crack with a ¼ b), the stress-riser is still three times the
nominal/average-stress.

9.2 Strain-Energy Release Rate

Figure 13.28 illustrates a material which is uniformly tensile stressed by the fixed
external force. If a thin horizontal crack develops, as illustrated in Fig. 13.28, then
some of the tensile strain energy stored in the material will be reduced/released, both
above and below the crack. If the horizontal crack propagates further, then even
more strain energy stored in the material will be released. The fundamental question
is, of course, will the strain energy released with crack growth be more than offset
by the rise in potential energy due to the bond breakage which occurs as the crack
propagates? If the answer is yes, then crack propagation is expected to continue and
will eventually lead to device failure.

While the analysis presented here may be oversimplified, it is instructive to
consider how much strain energy would be released when the thin circular crack
shown in Fig. 13.28 grows in size. We first consider brittle materials (where the
strain energy stored is in terms of elastic energy) and then generalize the results to
comprehend plastic materials.

Fig. 13.28 The external
force is acting to put the
material in a uniform tensile
state. The strain energy
stored in this film can be
released/reduced by crack
formation and growth
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The impact on the molecular bonding due to crack formation/growth is illustrated
in Fig. 13.27. Note that the crack (of length 2a) allows the material above and below
the crack to relax to a more unstressed state, thus reducing the strain energy in the
material. However, the bonds in the material region near the cracked tip are highly
strained. Well beyond the crack tip, the material is in the normal tensile-stress state.

The strain energy density (energy per unit volume) stored in a brittle crack-free
material of modulus E is given by:

uelastic ¼ 1
2
Eε2 ¼ 1

2
σ2

E

� �
: ð13:48Þ

While an oversimplification, let us assume that a thin crack develops (b ’ 0 in
Fig. 13.27) and propagates horizontally in a circular pattern (of radius a), as
indicated in Fig. 13.28. To further simplify the analysis presented, let us assume
that the strain energy immediately above and below the crack area is released/relaxed
for some effective thickness teff. Therefore, the strain energy that is released when a
thin circular crack develops in a brittle material and propagates horizontally is:

Ureleased ¼ uelastic � Volumeð Þ ¼ 1
2

σ2

E

� �
πa2teff
� 	

: ð13:49Þ

In analyzing crack growth problems, the strain-energy release rate G is of great
importance.14G represents the energy released (when a crack of radius a increases to
a + da). For a circular crack growing horizontally, as illustrated in Fig. 13.28, G can
be determined from Eq. (13.49) and is given by:

G ¼ 1
teff

dUreleased

da

� �
¼ πa

σ2

E

� �
: ð13:50Þ

While Eq. (13.50) for G was produced here, under some oversimplified assump-
tions, Griffth has shown that this equation for G is generally valid for brittle
materials. It is interesting to note that G, as normally defined by Eq. (13.50),
represents a rate only in the sense that dUreleased/da represents the strain energy
released for an incremental change in crack size da. Given the previous energy
balance discussion— the strain energy released must be greater than or equal to the
bonding energy increase associated with the crack size growth—then this energy
requirement can be restated, for the crack size to grow at a rapid rate:

G 	 Gcritical: ð13:51Þ

14The elastic energy Uelastic of the material reduces with crack propagation, thus we have defined
ΔUreleased such that it is always positive, i.e., ΔUreleased ¼ �ΔUelastic.

9 Crack-Induced Failures 267



9.3 Fast Fracture/Rupture

Gcrit has been measured for many materials by introducing a crack (actually a half-
crack) in the side of the material to a known depth a and then recording the level of
average stress in the material which causes rapid/catastrophic fracture. Gcrit is
determined by combining Eqs. (13.50) and (13.51), giving:

σfracture
ffiffiffiffiffi
πa

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
EGcrit

p
: ð13:52Þ

Typical measured values of Gcrit for several material types are shown in
Table 13.4.

Let us make sure that we clearly understand the implications of Eq. (13.52). The
right-hand side of this equation is in terms of measured material parameters only and
is a constant. The left-hand side is a product of the average stress σ in the material
and the root of π times the half-crack size a; if this product is equal to or greater than
the right side of the equation, then rapid/catastrophic fracture is expected.

Also shown in Table 13.4 are the related stress concentration factors Kcrit (also
called fracture toughness), where Kcrit is given by:

Kcrit ¼ σfracture
ffiffiffiffiffi
πa

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
EGcrit

p
: ð13:53Þ

One should note that since the units of G are in energy/area, then the energy
release rate G can be thought of as the energy required for the creation of two new
surfaces 2Γ, where Γ is the specific energy (surface energy per unit area). Thus, with
G ¼ 2Γ, Eq. (13.50) can be rewritten as:

σfracture ¼
ffiffiffiffiffiffiffiffiffi
E2Γ
πa

r
: ð13:54Þ

While the previous equations were developed under the brittle material assump-
tion (no plastic deformation), in most ductile materials crack propagation involves
more energy considerations than simply new surfaces creation—around each crack
an extensive plastic region exists, as illustrated in Fig. 13.27. Yielding in metals

Table 13.4 Representative values for Gcrit and Kcrit

Material Gcrit (kJ/m
2) Kcrit (MN/m3/2)

Dutile Metals: Cu, Ni, Al, Ag 100–1,000 100–350

Steel 10–100 50–150

Al-Alloys 10–30 20–50

Strong Polymers, Cast Iron 1–10 1–15

Granite, Silicon Nitride 0.1–1.0 2–5

Beryllium, Silicon Carbide, Alumina, Glass 0.01–0.1 1–3

Ice 0.003 0.2
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occurs at the ends of the crack thus increasing the toughness of the material, as
indicated in Table 13.4. Generally, ductile metals show much greater toughness
(higher Gcrit and Kcrit). Brittle materials such as glass show little toughness.

Irwin has shown that the plastic region associated with the crack simply serves to
increase the specific surface energy and thus produces an effective specific surface
energy Γeff which can be written as:

Γeff ¼ Γsurface þ Γplastic: ð13:55Þ

Thus, the Griffith criterion can still be used even for ductile materials:

Gcrit ¼ πa
σ2rupture
E

 !
: ð13:56Þ

The rupture stress σrupture is used here for ductile materials since fracture stress
σfracture is usually reserved for brittle materials. Therefore, one can write for both
brittle and ductile materials:

σrupture ¼
ffiffiffiffiffiffiffiffiffiffiffi
EGcrit

πa

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EΓeff

πa

r
¼ Kcritffiffiffiffiffi

πa
p : ð13:57Þ

Again, we remind ourselves—when the right-hand side of Eq. (13.57) is equal to
the nominal/average stress in the material, then we expect rapid crack propagation
and catastrophic rupture.15 The nominal/average stress level in the material at which
this occurs is referred to as the rupture stress σrupture. One can see that the larger the
crack size a, the lower the average stress level in the material needed to produce
rapid rupture. Also, perhaps it is helpful to remember a common-experience exam-
ple. When striking a piece of wood parallel to the wood fibers with an axe, the piece
of wood will show fast rupture/splitting when a combination of stress level and
indentation/crack-size produced by the axe reaches a critical level.

10 Fatigue-Induced Failures

During the discussion of crack propagation, it was emphasized that rapid crack
propagation resulting in rapid/catastrophic failure was expected when:

15Note that when the crack size a goes to zero, the apparent rupture stress goes to infinity. However,
in these situations, where the right-hand side of the equation becomes extremely large, the rupture
stress will be limited by the normal crack-free rupture mechanisms and σrupture will assume the
crack-free rupture strength.
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K ¼ Kcrit ¼ σrupture
ffiffiffiffiffi
πa

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
EGcrit

p
: ð13:58Þ

This does not mean, however, that the material will not fail with time when K <
Kcrit. The material will fail with time, and the time-to-failure will depend on the level
of stress.

One mechanism that can produce time-dependent failure is fatigue. For example,
crack formation often occurs in a metal sign/light pole at its welded connection to its
supporting base plate as illustrated in Fig. 13.29. As the pole sways, in a gusting
wind, one side of the metal pole at its supporting base-plate connection will come
under tension while the opposite side will come under compression. The stress state
and the magnitude of these stresses will continually change with a changing wind.
Also, the tensile and compressive states in the pole will be reversed with a reversal of
wind direction.

Fatigue failure can result in cycles-to-failure problems. The subject of fatigue can
be so important that it is discussed separately in this text. Fatigue can arise when a
material is continually put under cyclical stress conditions as illustrated in
Fig. 13.30.

Useful stress parameters for describing cyclical stress are:

Δσ ¼ σmax � σmin, σmean ¼ σmax þ σmin

2
, σa ¼ σmax � σmin

2
, ð13:59Þ

where Δσ is the stress range, σmean is the mean stress, and σa is the amplitude of
stress relative to the mean.

We will first consider cyclical stressing where one has alternating equal amounts
of tensile and compressive stress, i.e., σmean ¼ 0, and then generalize to σmean 6¼
0 conditions. Also, rather than discussing TF, it is more useful to discuss cycles-to-
failure (CTF) for fatigue-related failures.

Base-Plate

Fixed-Support

Fixed
Support

Welded
Region

PoleCrack
Formation

Joe’s
Bar & Grill

Clamping
Bolt

Fig. 13.29 Cracks can
develop just above the
welded connection of a sign/
light pole to its base plate.
Gusting-wind conditions
and/ or changes in wind
direction can result in a
cyclical stress in the metal.
Cyclical stress can cause the
cracks to grow, eventually
leading to failure. Also note
that the cracks tend to form
in the heat affected region
(the region in the pole just
above the welded region)
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10.1 Fatigue for Materials (No Pre-existing Cracks)

Shown in Fig. 13.31 is a typical stress-strain (σ � ε) curve for a material. In the
elastic region, it is assumed that no damage is occurring during cycling. In the plastic
region, each stress cycle will induce a certain amount of plastic deformation (dam-
age/degradation) to the material. The degradation will continue with each cycle until
the material fails.

(+)

(-)

(0)

Cycles

St
re
ss

σMax

σMin

σMean

σa

Fig. 13.30 Cyclical stress is shown. Key parameters for the cyclical stress are: maximum stress
level (σmax) and minimum stress level (σmin) that define the stress range (Δσ), mean stress level
(σmean), and stress amplitude (σa)

Elastic Behavior

Plastic Behavior

σ

εΔεpl

σyield

Fig. 13.31 Stress(σ)–Strain
(ε) curve for one cycle of
cyclical stress with σmean ¼
0. Material damage/
degradation can be expected
during plastic deformation.
The amount of strain in the
plastic region is represented
by Δεpl
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10.2 Low-Cycle Fatigue

Since the damage to the material during each cycle depends on the amount of plastic
deformation Δεpl, then a power-law model for the CTF would seem to be reasonable:

CTF ¼ B0 Δεp1
� 	�n

low-cycle fatigueð Þ: ð13:60Þ

The previous equation is referred to as the Coffin-Manson Model and it is
generally valid for low-cycle fatigue (where CTF is generally <104 cycles) due to
large plastic strain Δεpl during the cycling. The values of n generally range from n¼
1 to 3 for ductile metals, 3–6 for hard materials, and 6–9 for brittle materials. One can
see in Fig. 13.32, with a mean stress offset (σmean > 0), that even greater plastic strain
(Δεpl)1 occurs during each cycle thus shorter CTF can be expected:

CTF ¼ B0 Δεpl
� 	�n

1 low-cycle fatigueð Þ: ð13:61Þ

The stress offset serves to increase the amount of plastic deformation [(Δεpl)1
greater than (Δεpl)0] during each cycle thus reducing the number of cycles-to-failure.

10.3 High-Cycle Fatigue

An alternative equation (power-law expression using the stress range Δσ rather than
the plastic strain) is generally used for high-cycle (>104 cycles) fatigue:

CTF ¼ B0 Δσ � Δσelasticð Þ�m high-cycle fatigueð Þ, ð13:62Þ

Elastic Behavior

Increased
Plastic Behavior

σ

ε

(Δεpl)1

(Δεpl)0

σyield

σmean

Fig. 13.32 Stress(σ)–Strain
(ε) curves. Solid curve
represents a cycle with σmean

¼ 0. Dashed curve
represents a cycle with σmean

> 0. For a constant Δσ
range, greater material
damage/degradation can be
expected with σmean >
0 during plastic deformation
due to the fact that (Δεpl)1 >
(Δεpl)0
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where the total stress range is Δσ and Δσelastic is the portion of the total stress
range that is in the elastic region (thus producing no damage). The previous equation
is generally referred to as Basquin’s Law. This equation is used for cyclic stresses,
where the stress range is given by Δσ and zero mean stress (σmean ¼ 0). If, however,
σmean 6¼ 0 (e.g., offset in the tensile-stress direction), then a Goodman-like relation
can be developed for the effective stress range (Δσ)eff:

Δσð Þeff ¼
Δσ

1� σmean=σTSð Þ : ð13:63Þ

Note that with a mean stress offset of σmean (if it is a significant fraction of the
tensile strength σTS) it serves to increase the effective cyclical stress range Δσeff. An
increase in the effective stress range, according to Eq. 13.62, reduces the number of
cycles-to-failure CTF.

An example of a mean stress offset is illustrated in Fig. 13.33. In Fig. 13.33a, a
metal pole is shown supporting a sign. During gusting-wind conditions, a cyclical
stress will be generated in the pole, with the maximum bending moment occurring
where the metal pole is welded to its base plate. Shown in Fig. 13.33b is a similar
situation of a pole supporting a sign; except in this case, a cantilever attachment of a
stoplight to the pole also exists. This cantilevered attachment of the stoplight to the
pole will serve to put the left side of the pole, at its base plate connection, in a state of

Cantilevered
Beam

Signs

Base
Plates

Clamping
Bolts

Metal
Poles

Fixed
Support

Fixed
Support

(a) (b)

Fig. 13.33 Shown in (a) is metal pole supporting a sign. Also shown are the bolts used to clamp the
base plate to the fixed support. Shown in (b) is a similar configuration except that a cantilevered
beam is also attached to the pole behind the sign. On the cantilevered beam hangs a stoplight which
serves to produce an added moment (additional mean stress) at the base plate
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mean tension and the opposite side in a state of mean compression. Now, with
gusting wind conditions, the left side of the pole will have cyclical stress about a
mean tensile stress. With a mean tensile stress in the pole, the effective stress range
(Δσ)eff given by Eq. 13.63 will now be larger than the actual stress range (Δσ) and
each cycle will now produce more damage.

One can see from Eq. (13.63) that as the mean stress σmean increases (relative to
the tensile strength σTS of the material), then the effective stress range (Δσ)eff
increases and a shorter number of CTF is expected, given by:

CTF ¼ B0
Δσ

1� σmean=σTSð Þ � Δσelastic
� ��m

: ð13:64Þ

Example Problem 10
A metal pole experiences a cyclic stress at the base-plate connection due to the
swaying of the pole. During a half cycle, one side of the metal pole at the base
plate will come under tension while the opposite side comes under compres-
sion, then the roles of tension/compression are reversed during the next half
cycle. In addition, if the pole also supports an overhanging structure such as
the stoplight shown in Fig. 13.33, then an additional mean stress offset of
σmean ¼ 190 MPa will occur. To make sure that the pole will last the required
time, accelerated data was taken on poles (without an overhanging structure)
where a cyclical stress was applied to the poles whereby the metal at the base
plate came under a continuous cyclical stress range of�600MPa to +600 MPa
with a mean tensile stress of zero. The poles failed at the base plate connection
after 10,000 cycles. Assuming a power-law exponent of n ¼ 4 for the cycling,
a metal tensile strength of 800 MPa and no defined elastic range (due to cracks
or other issues):

(a) Estimate the number of cycles-to-failure CTF that would be expected if the
normal-use stress range is between �200 MPa to +200 MPa and there is
no overhanging structure.

(b) Estimate the number of cycles-to-failure CTF that would be expected if the
normal-use stress range is between �200 MPa and +200 MPa but there is
an overhanging structure that produces mean tensile offset of σmean ¼
190 MPa.

Solution

(a) Expected acceleration factor for the cycling:

AF ¼ Δσð Þstress
Δσð Þoperation

" #n
¼ 600� �600ð ÞMPa

200� �200ð ÞMPa

� �4
¼ 3½ �4 ¼ 81:

(continued)
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Therefore:

CTFð Þoperation ¼ AF � CTFð Þstress ¼ 81 10; 000cyclesð Þ ¼ 810, 000cycles:

(b) The overhang which serves to produce a mean stress in the pole also serves
to increase the effective stress range under use conditions:

Δσð Þeff ¼
Δσ

1� σmean

σTS

¼ 200� �200ð Þ½ �MPa

1� 190MPa
800MPa

¼ 525MPa:

The acceleration factor now becomes:

AF ¼ Δσð Þstress
Δσð Þoperation

" #n
¼ 600� �600ð ÞMPa

525MPa

� �4
¼ 2:286½ �4 ¼ 27:

Therefore:

CTFð Þop ¼ AF � CTFð Þstress ¼ 27 10; 000cyclesð Þ ¼ 270, 000cycles:

10.4 Fatigue for Materials (With Pre-existing Cracks)

A material with a pre-existing crack is stressed with a sinusoidal stress as shown in
Fig. 13.34. The stress concentration factor K for a crack was previously defined for a
constant tensile stress load σ. ΔK values are useful for cyclical stress:

ΔK ¼ Khigh � K1ow ¼ σhigh � σ1ow
� 	 ffiffiffiffiffi

πa
p ¼ Δσ

ffiffiffiffiffi
πa

p
: ð13:65Þ

Fig. 13.34 Sinusoidal
stress is applied to a material
with a pre-existing crack
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The crack growth da per cycle dN can be written:

da
dN

¼ C0 ΔKð Þm ¼ F0 Δσð Þm að Þm=2: ð13:66Þ

Separating variables and integrating, gives:

ðCTF
0

dN ¼ 1
F0

ðafail
a0

da

am=2

24 35 Δσð Þ�m: ð13:67Þ

The above equation reduces simply to a power-law dependence:

CTF ¼ A0 Δσ½ ��m: ð13:68Þ

No elastic range Δσelastic appears in Eq. (13.68) because it assumes that the stress
riser at crack tips reduces the elastic range to zero. As previously discussed, for
cyclical stressing when σmean 6¼ 0, then

CTF ¼ A0
Δσ

1� σmean=σTSð Þ
� ��m

: ð13:69Þ

One can see that the functional form for CTF in Eq. (13.64) [for materials without
cracks] is very similar in form to that for materials with cracks, Eq. (13.69).
However, there is no assumed elastic range Δσelastic when the crack is present and
the prefactors (A0 and Bo) are quite different. In general, for materials with cracks, A0

is much less than B0. Also, the cracks (which may vary greatly in number and size
from device to device) generally drive a wider spread in the CTF data. This serves to
produce a larger logarithmic standard deviation (in the case of the log-normal
distribution) or a smaller Weibull slope (in the case of the Weibull distribution).

Example Problem 11
Suppose that a certain batch of poles (described in Example Problem 10) has
cracks (at time-zero) just above the welded region at the base plate. Rather than
failing at 10,000 cycles under accelerated cyclical stress, they now fail in 1,000
cycles.

(a) Estimate the number of cycles-to-failure CTF that would be expected if the
normal-use stress range is between –200 MPa to +200 MPa (without an
overhanging structure).

(b) Estimate the number of cycles-to-failure CTF that would be expected if the
normal-use stress range is between –200 MPa and + 200 MPa and with an

(continued)
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overhanging structure that produces mean tensile stress offset of σmean ¼
190 MPa.

Solution
One would expect that the cracks will impact the prefactor in the CTF
Eq. (13.69) but the acceleration factors are expected to be similar. Thus,

(a) (CTF)operation ¼ AF � (CTF)stress ¼ 81(1,000 cycles) ¼ 81,000 cycles.
(b) (CTF)op ¼ AF � (CTF)stress ¼ 27(1,000 cycles) ¼ 27,000 cycles.

11 Adhesion Failures

Adhesion failures are associated with the debonding of materials. Similar to all the
other failure mechanisms discussed, adhesion failures are driven by a free energy
difference between the bonded and debonded materials.

Consider two materials that are bonded at an interface, as shown in Fig. 13.35. Let
us compare the stress energy in the films (which is positive) to the interfacial
bonding energy (which is negative). The stress energy would be lower if the two
materials would delaminate but the interfacial energy would be higher due to the
broken bonds. These are the two competing energy mechanisms that serve to hold
the two materials together.

The elastic stress-energy density u in the two materials can be written as:

uelastic ¼ uA þ uB ¼ 1
2

1
EA

� �
σ2A þ

1
2

1
EB

� �
σ2B: ð13:70Þ

If the two materials A and B delaminate, two new surfaces will be created, one
with a specific energy density16 ΓA and the other ΓB. Thus, the total specific energy
density associated with the formation of the two new surfaces is given by: Γtotal¼ ΓA
+ ΓB.

Fig. 13.35 Two materials, A and B, are bonded together. If there are stresses in the two materials
(due toMaterial A interacting withMaterial B, and vice versa) then there will be a driving force for
the two materials to delaminate. A driving force for delamination, over some interfacial area da, will
exist if the stress-energy reduction in A and B is greater than the increase in bonding energy
associated with the formation of the delaminated region da

16Recall that specific energy density is the energy per unit area.
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Therefore, the free energy driving force for the materials to delaminate is: the
stress energy reduction in some differential area damust be greater than the increase
in bonding energy associated with the creation of the two new surfaces at the
interface:

1
2

1
EA

� �
σ2A

� �
tAdað Þ þ 1

2
1
EB

� �
σ2B

� �
tBdað Þ 	 ΓA þ ΓB½ �da: ð13:71Þ

This reduces simply to:

1
2

tA
EA

� �
σ2A þ

1
2

tB
EB

� �
σ2B 	 ΓA þ ΓB: ð13:72Þ

While the focus of this section is on adhesion, there is a similarity with crack
propagation previously discussed. For a crack to propagate, the strain energy
released within the materials or along their interfaces must be greater than the
increase in specific energy density associated with the newly created surfaces/
interfaces during the crack growth.17 For delamination to continue, the strain energy
release rate by delamination must be greater than the specific energy increase
associated with the two new surfaces.

12 Thermal-Expansion-Induced Failures

Solid materials tend to expand when heated. The reason for this is the asymmetrical
bonding potential between the atoms forming the solid (as illustrated in Fig. 13.1).
The thermal expansion of materials, in itself, is not a reliability issue. The thermal
expansion simply redefines a new equilibrium position. However, if the material is
constrained in any way, while it is trying to expand thermally, then large
thermomechanical stresses can develop in the materials. It is these large
thermomechanical stresses that can cause material degradation and eventual failure
of the device.

12.1 Thermal Expansion

The molecular bonding model shown in Fig. 13.1 permits one to discuss what
happens to the equilibrium bonding positions as the temperature is increased. The

17Historically, this has been referred to as Griffith’s equation which was developed for brittle
materials. More recently, Irwin is usually credited for developing the failure in terms of a strain
energy release rate G [(Eq. (13.56)], which incorporates both elastic and plastic deformations when
new surfaces or interfaces are formed.
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asymmetrical potential associated with molecular bonding is illustrated in
Fig. 13.36.

Quantum mechanics permits only certain allowed vibrational states to exist.
Increasing the temperature (thermal energy) serves to make the population of the
higher vibrational states more probable. However, the mean position for the vibrat-
ing atom tends to increase with higher vibrational-state population. Therefore, the
mean bond length tends to increase with temperature.

Since the change in bond length Δr with temperature is generally small compared
with the original bond length r0, a Taylor expansion normally suffices:

r Tð Þ ffi r T0ð Þ þ ∂r
∂T

� �
T¼T0

T � T0ð Þ: ð13:73Þ

Equation (13.73) can be rewritten simply as:

Δr
r0

¼ αΔT , ð13:74Þ

where α is the linear thermal expansion coefficient defined as18:

α ¼ 1
r0

∂r
∂T

� �
T¼T0

: ð13:75Þ

Fig. 13.36 Increase in temperature serves to increase the probability that higher vibrational
quantum states will be occupied. Due to the asymmetrical bonding potential, the higher quantum
states will have an increase in mean bond length

18Linear coefficients of thermal expansion are listed for several material types (in units of 10�6/�C):
αpolymers ffi 50, αmetals ffi 10, aceramics ffi 2, αglass ffi 0.5.
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The translation from microscopic (molecular) dimensions r to macroscopic length
L (solid) dimensions is straightforward. If the length of the solid material is L, then
L must be given by the number of elemental units N times the elemental distance r,
then one can write:

ΔL
L0

¼ L Tð Þ � L T0ð Þ
L T0ð Þ ¼ N r0 þ Δr½ � � Nr0

Nr0
¼ Δr

r0
: ð13:76Þ

Therefore:

α ¼ 1
r0

∂r
∂T

� �
T¼T0

¼ 1
L0

∂L
∂T

� �
T¼T0

: ð13:77Þ

Since the linear strain ε is given by ΔL/L0 (or equivalently Δr/r0), then the
thermal expansion strain, from Eq. (13.74), is given by:

ε ¼ αΔT : ð13:78Þ

12.2 Constrained Thermal-Expansion

If a material is constrained such that it cannot move during temperature changes,
then a thermomechanical stress σ develops in the material given by:

σ ¼ Eε ¼ αEΔT , ð13:79Þ

where E is Young’s modulus. Using Eq. (13a) from Chap. 4, then time-to-failure
due to a constrained thermomechanical stress is expected to take the form:

TF ¼ A0 σð Þ�nexp
Q

KBT

� �
¼ B0 T � T0ð Þ�nexp

Q

KBT

� �
forT > T0ð Þ ð13:80aÞ

Or

TF ¼ A0 σð Þ�nexp
Q

KBT

� �
¼ B0 T0 � Tð Þ�nexp

Q

KBT

� �
forT < T0ð Þ: ð13:80bÞ

In the previous equation, T0 is assumed to be the temperature at which zero stress
exists in the material. As one goes to a temperature above or below T0, a
thermomechanical stress develops in the material. The thermomechanical stress
can bring about material degradation and possible failure due to creep, especially
at elevated temperatures. The impact of this thermomechanical stress on the time-to-
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failure is expected to be thermally activated (activation energy ¼ Q). However, the
effective/observed activation energy will be complicated by the fact that the
prefactor in the above equation is also temperature dependent. This was discussed
in detail for stress migration in Chap. 11.

12.3 Thermal-Expansion Mismatch

Seldom is there only a single material used in a device. Different materials are often
joined/bonded together to form the device. If these materials have significantly
different thermal expansion coefficients, then large thermal-expansion mismatch
stresses can be generated during thermal cycling. These thermomechanical stresses
can induce failures because of: creep, fatigue, cracking, buckling and/or
delamination.

Shown in Fig. 13.37 are two materials, A and B, which are constrained to move
together during thermal expansion due to the adhesion forces existing at the interface
of materials A and B. If the two materials were joined at temperature T0, and if
material A is assumed to have a greater thermal expansion coefficient than B, then an
increase in temperature above T0 will result in A being under a state of compression
and B under tension.

The strain in material A is given by:

εA ¼ ΔL
L0

� αAΔT , ð13:81Þ

and, likewise, the strain in B is given by:

εB ¼ ΔL
L0

� αBΔT: ð13:82Þ

Fig. 13.37 Two materials are constrained by interfacial adhesion to move together during thermal
expansion from T0 to T. If the thermal expansion coefficient for A is greater than B, then constrained
thermal expansion above T0 results in A being in compression and B in tension
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Since the two materials are constrained to move together during the thermal
expansion, then Newton’s third law tells us that the force of Material A acting on
B must be equal and opposite to B acting on A:

FA ¼ �FB

) σA tA �Widthð Þ ¼ �σB tB �Widthð Þ
) EAεAð ÞtA ¼ � EBεBð ÞtB
) εA ¼ � EB

EA

� �
tB
tA

� �
εB,

ð13:83Þ

where E is the modulus for each material and t is the thickness of each material.
Solving Eqs. (13.81), (13.82) and (13.83) for σA and σB, one obtains:

σA ¼ EAεA ¼ EA αB � αAð ÞΔT
1þ EA

EB

� �
tA
tB

� � , ð13:84Þ

and

σB ¼ EBεB ¼ EB αA � αBð ÞΔT
1þ EB

EA

� �
tB
tA

� � : ð13:85Þ

Note that when αA > αB, material A will be under compression and material B will
be under tension.

It is instructive to look at the strain ratio (εA/εB), stress ratio (σA/σB) and the stress
energy density ratio (uA/uB) for thermal expansion mismatch:

Strain Ratio

εA
εB

¼ � EB

EA

� �
tB
tA

� �
ð13:86Þ

Stress Ratio:

σA
σB

¼ � tB
tA

� �
ð13:87Þ

Energy Density Ratio:

uA
uB

¼
1
2EAε2A
1
2EBε2B

¼ EB

EA

tB
tA

� �2

: ð13:88Þ
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Note that if the material thicknesses are equal, tA¼ tB, then Eq. (13.86) shows that
most of the strain will be in the lower modulus material. Furthermore, Eq. (13.88)
indicates that most of the energy density will be in the lower modulus material.

12.4 Thin Films on Thick Substrates

It is well known that thin layers (thin films) on thick materials (thick substrates) are
prone to delamination, cracking, buckling, or blistering. Eqs. (13.86), (13.87) and
(13.88) can be used to understand why this is the case. Assuming that the modulus
for A is similar to that for B; when the substrate (material B) is very thick compared to
material A, then most of the strain, stress, and energy density is in thin film A. If the
adhesion strength of materials A and B is relatively good, then tensile-stressed films
can crack (Fig. 13.38) to relieve the strain energy. Compressive films can buckle
(Fig. 13.39) in order to release the strain energy—this is why a thermal expansion
gap in concrete is often used. If the adhesion strength of A and B is relatively poor,
then delamination/blistering can occur (Fig. 13.40) in order to release the strain
energy.

In addition to thermomechanical stress in thin films, intrinsic stresses can also be
very important. Intrinsic stresses can develop during fabrication of the material and
these stresses are not related to thermal-expansion mismatch. An example of

Fig. 13.38 Cracking can
occur when material A is
under tensile stress.
Cohesive cracking is a
stress/strain-energy release
mechanism when the
adhesion of A and B is
strong. Delamination of
layer A from layer B can
occur if the adhesion of A to
B is relatively weak

Fig. 13.39 Shown is the
buckling which can occur
when material A is under
compressive stress.
Buckling can be a
compressive stress-relief/
strain-energy release
mechanism when the
adhesion of layer A to layer
B is strong
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intrinsic stress is the stress which can develop in thin metal-oxide layers which are
thermally grown at a fixed temperature on relatively thick metal substrates. If the
volume of the metal oxide is much larger than the volume of the metal consumed,
then a large compressive stress will develop in the metal-oxide layer during growth.
Likewise, if the volume of the metal oxide is much less than the volume of the metal
consumed, then a large tensile stress will develop in the metal-oxide layer during
growth. These intrinsic stresses are developed during thin-film fabrication (metal-
oxide growth) and, as such, are built into the film during fabrication. As these metal-
oxide films are then lowered from their fabrication/growth temperature, then the
thermal expansion mismatch can add to or reduce the mechanical stress in these thin
films.

Example Problem 12
A metal component in a certain application will be thermal cycled from room
temperature to an oxidizing ambient of 250 �C. To prevent oxidation of the
metal at the high temperatures, a thin ceramic coating is used on the metal
component. The concern is that cracks will develop in the ceramic layer during
thermal cycling thus exposing the metal to oxidation. To accelerate the
cracking, the components were thermal cycled from room temperature to
700 �C. If cracks start to develop in the ceramic layer after 100 thermal cycles
from room temperature to 700 �C, how many crack-free cycles would be
expected from room temperature to 250 �C? Assume that the ceramic material
is hard/brittle with a temperature exponent of at least n ¼ 7.

Solution

AF 	 ΔTð Þstress
ΔTð Þoperation

" #n
¼ 700� 25ð ÞoC

250� 25ð ÞoC
� �

¼ 3ð Þ7 ¼ 2, 187:

Therefore:

CTFð Þoperation 	 AF � CTFð Þstress ¼ 2, 187 100cyclesð Þ ¼ 218, 700cycles:

Fig. 13.40 Shown is the
blistering which can occur
when material A is under
compressive stress.
Blistering is a compressive
stress-relief/ strain-energy
release mechanism when the
adhesion of layers A and B is
relatively weak
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13 Corrosion-Induced Failures

There is a strong driving force (large free energy difference) for metals to oxidize/
corrode as illustrated in Fig. 13.41. This is why, in nature, one can easily find metal
oxides (ores) but it is very difficult to find the element in its pure-metallic form. The
only exception to this is gold (which generally does not oxidize) and it can found in
nature in the metallic state. However, generally, metals are found in nature as metal
oxides.

In order to obtain metal in a pure metallic form, a significant energy input is
required to separate the metal from its oxide/ore. Once in the metallic form,
tremendous amounts of money (tens of $billions each year) are spent for corrosion
prevention and replacement of corroded parts.

An example of corrosion failure is shown Fig. 13.42 where a U-type support
clamp has totally corroded away at the point of maximum bending.

13.1 Dry Oxidation

Table 13.5 shows the very strong driving force (ΔGFormation) for a metal atom to
combine with O2 to form a metal oxide. The more negative the formation energy, the
stronger the driving force for the metal atom to oxidize. However, the activation
energy which limits the oxidation rate depends on the ability of the metal ions and/or

Fig. 13.41 Strong driving force (largeΔG) exists for metal oxidation. The activation energy (ΔG*)
tends to limit the corrosion rate
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oxygen ions to diffuse through MxOy oxide layer formed, as well as the ability of the
electrons to conduct through this oxide layer. Key features of the oxidation process
are shown in Fig. 13.43.

The process of oxidation generally converts metals into insulators. Normally this
is thought to have negative consequences; but, in at least one very important case
(oxidation of silicon), this oxide formation permits one to build metal/oxide/ silicon
field-effect transistors (MOSFETs) which were instrumental in driving the > $250
B/year semiconductor industry in 2008. It is very difficult to imagine life without
computers, laptops, smart phones, iPods, iPads, implantable medical devices, etc. In
addition, copper oxide tends to be superconducting at low temperatures.

Fig. 13.42 Corrosion
failure of a U-type metal
support clamp. The metal at
the bottom of the support
clamp has corroded away.
One should note that the
corrosion rate was greatest
in the regions where the
metal was severely bent

Table 13.5 Free energy for Metal-Oxide (MxOy) formation

Metal Oxidation state MxOy ΔG [kJ/(Mole of O2)] ΔG [eV/(O2 molecule)]

Be Be ! Be2+ + 2e BeO �1,182 �12.27

Al Al ! Al3+ + 3e Al2O3 �1,045 �10.85

Ti Ti ! Ti2+ + 2e TiO �1,000 �10.38

Si Si ! Si4+ + 4e SiO2 �848 �8.80

Ta Ta ! Ta5+ + 5e Ta2O5 �764 �7.93

Cr Cr ! Cr3+ + 3e Cr2O3 �757 �7.86

Zn Zn ! Zn2+ + 2e ZnO �636 �6.60

W W ! W6+ + 6e WO3 �510 �5.29

Fe Fe ! Fe2+ + 2e FeO �508 �5.27

Sn Sn ! Sn2+ + 2e SnO �500 �5.19

Ni Ni ! Ni2+ + 2e NiO �439 �4.56

Cu Cu ! Cu2+ + 2e CuO �254 �2.64

Pt Pt ! Pt4+ + 4e PtO2 �160 �1.66

Ag Ag ! Ag+ +e Ag2 O �5 �0.05

Au Au ! Au3+ + 3e Au2O3 80 0.83
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There are at least three oxidation models often used to describe the rate of
oxidation: linear growth rate, parabolic growth rate, and logarithmic growth rate.
Often, the initial growth rate for a period of time t0 will be erratic until some
minimum oxide thickness x0 (at least a few monolayers) is reached. Then above
the initial thickness and time conditions (x0, t0), the growth rate is relatively well
behaved and generally described by one of the three models given below.

13.1.1 Linear Oxide-Growth Region

In the linear growth region, one assumes that the oxide thickness x grows at a
constant rate k1 which is temperature dependent:

dx
dt

¼ k1, ð13:89Þ

where,

k1 ¼ k10exp � Q

KBT

� �
: ð13:90Þ

Separating the variables, in Eq. (13.89), and integrating from the initial conditions
(x0, to) to the conditions (x, t), one obtains:

x ¼ x0 þ k1 t � t0ð Þ: ð13:91Þ

M2+

O2-

2e

Metal Oxide

Metal Oxide O2 Ambient

O2 Ambient

M2++ O2-� MO

(1/2)O
2
+2e-� O2-

M � M2++ 2e-

Fig. 13.43 Dry metal corrosion (oxidation in an O2 containing gas ambient at high temperatures)
results in an metal-oxide (MxOy) formation on the surface of the metal. The quality of this oxide
layer generally controls the oxidation reaction rate by limiting M-ion and/or O-ion diffusion. Also
shown are the freed electrons (from the metal ion) that must be able to conduct through this oxide
layer in order for the oxidation process to continue
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Assuming that time-to-failure (t ¼ TF) for a device occurs when the oxide
thickness increases to some critical level (Δx)crit ¼ (xcrit - x0), then TF is given by:

TF ¼ t0 þ Δxð Þcrit
k10

exp
Q

KBT

� �
¼ t0 þ A10exp

Q

KBT

� �
: ð13:92Þ

Normally, TF � t0 and t0 is often ignored.
Some metals such as iron tend to show poor resistance to oxidation because the

oxide layer cracks and/or delaminates during oxidation. Oxide damage will tend to
occur when the volume of the metal oxide MxOy is much different from the volume
of the consumed metalM. If the metal oxide MxOy volume is less than the volume of
the metal M consumed, then the oxide layer will be in a severe state of tension and a
strong driving force for oxide cracking will exist. If the metal oxide MxOy volume is
much greater than the metal M consumed, then the oxide layer will be under severe
state of compression and oxide layer delamination (blistering or buckling) can be
anticipated. Shown in Fig. 13.44 is a pure piece of Cu after it has been exposed to dry
oxidation at 250 �C. Note that the damage that occurs in the CuxOy layer is because
of intrinsic stresses developed during oxide growth.

Fig. 13.44 Dry oxidation of pure copper. (a) Copper at time-zero. (b) After 250 �C storage in an
oxygen-containing ambient. CuxOy layer shows evidence of cracking and delamination
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13.1.2 Parabolic Oxide-Growth Region

In the parabolic oxide-growth region, one assumes that the growth rate is inversely
proportional to the oxide thickness and directly proportional to the reaction rate
constant k2which is temperature dependent:

dx
dt

¼ k2
x
, ð13:93Þ

where

k2 ¼ k20exp � Q

KBT

� �
: ð13:94Þ

Separating variables, in Eq. (13.93), and integrating

ðx
x0

x dx ¼ k2

ðt
t0

dt, ð13:95Þ

then one obtains

x2 ¼ x20 þ 2k2 t � t0ð Þ: ð13:96Þ

Note that for t � t0 and x � x0, then one obtains the standard diffusion relation:

x ¼
ffiffiffiffiffi
Dt

p
, ð13:97Þ

where,

D Tð Þ ¼ 2k2 Tð Þ ¼ 2k20exp � Q

KBT

� �
¼ D0exp � Q

KBT

� �
: ð13:98Þ

Assuming that t ¼ TF, when the oxide thickness reaches some critical value xcrit,
then

TF ¼ t0 þ x2crit � x20
2k20

� �
exp

Q

KBT

� �
¼ t0 þ A20exp

Q

KBT

� �
: ð13:99Þ

Often, TF � t0 and t0 is ignored.
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Example Problem 13
The critically important integrated circuit (IC) industry is based on the ability
to grow a self-passivating oxide layer on silicon. During parabolic oxide growth
at high temperatures, it was found that SiO2 grew to an oxide thickness of 100

A
�
in one hour. How long would it take for SiO2 oxide to grow to 200 A

�
?

Solution
For a parabolic growth rate, and assuming that the time-zero oxide thickness
on the silicon is negligible, one obtains:

x2 ¼ kt

) k ¼ x2

t
¼
�
100 A

� 	2
1hr

¼ 1, 000A
�
2

1hr
¼ 1� 104

A
�
2

h
:

Therefore, the total time required to grow the oxide layer to 200 Å is:

t ¼ x2

k
¼
�
200 A

� 	2
1� 104A

�
2

hr

¼ 4hrs:

Example Problem 14

In the previous example problem, it took 4 h to grow 200 A
�
of SiO2 on silicon

at 950 �C. How long would it take to grow the 200 A
�
of SiO2 at 1,000 �C?

Assume the activation energy for the growth rate is Q ¼ 2.0 eV.

Solution
The reaction rate constant k at 1,000 �C is expected to take the form:

k Tð Þ¼ k0 � Q

KB

1
T
� 1
T0

� �� �
¼ 1:0

� 104
A
�
2

h
exp � 2:0eV

8:62� 10�5 eV=K

1
1;000þ 273ð ÞK� 1

950þ 273Kð Þ
� �� �

¼ 2:1� 104
A
�
2

h
:

Therefore, the time at 1,000 �C to grow 200 A
�
of SiO2 would be:

t ¼ x2

t
¼
�
200 A

� 	2
2:1� 104A

�
2

h

¼ 1:9h:
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13.1.3 Logarithmic Oxide-Growth Region

In the logarithmic oxide-growth region, one assumes that the growth rate saturates
with time. Thus, the growth rate is assumed to be inversely proportional to the
growth time t and directly proportional to the reaction rate constant k3, which is
temperature dependent:

dx
dt

¼ k3
t þ t0

, ð13:100Þ

where

k3 ¼ k30exp � Q

KBT

� �
: ð13:101Þ

Separating variables in Eq. (13.95) and integrating, one obtains:

ðx
x0

dx ¼ k3

ðt
t0

dt
t þ t0

, ð13:102Þ

giving,

x ¼ x0 þ k3 ln
t þ t0
2t0

� �
, ð13:103Þ

where,

k3 ¼ k30 exp � Q

KBT

� �
: ð13:104Þ

Setting t ¼ TF, when x ¼ xcrit, then the time-to-failure equation becomes:

TF ¼ t0 2exp A30exp
Q

KBT

� �� �
� 1


 �
, ð13:105Þ

where,

A30 ¼ xcrit � x0
k30

: ð13:106Þ

Another way of writing Eq. (13.105), for easier parameter extraction/determina-
tion, is
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ln
TF þ t0
2t0

� �
¼ A30 exp

Q

KBT

� �
, ð13:107Þ

where it is assumed t0 is not equal to zero.

13.2 Wet Corrosion

Wet corrosion (or electrolytic corrosion) is significantly different from dry corrosion
in that metal hydroxides M(OH)ntend to form during wet oxidation (in aerated water)
at relatively low temperatures, whereas metal oxides (MxOy) tend to form during dry
oxidation at relatively high temperatures.

The formation of metal hydroxides during wet corrosion is a critically important
difference—whereas metal oxides generally do not dissolve easily in water, metal
hydroxides can dissolve relatively easily in water and thereby constantly exposing
fresh metal for continued oxidation. While metal dry oxidation is normally an issue
only at elevated temperatures, wet corrosion may occur easily at room temperature.

The critical features of wet corrosion are illustrated in Fig. 13.45. For wet
corrosion to occur, one needs the four key elements of an electrolytic cell to exist:

Fig. 13.45 Metal wet-corrosion (corrosion in aerated water) results in an metal-hydroxide
[Mx(OH)y] formation on the surface of the metal. Metal hydroxides can dissolve in water, thus
exposing fresh metal for continued corrosion. Certain regions in the metal can become anodic,
relative to other locations, depending on mechanical stress differences, grain size differences,
impurity concentration differences, impressed potentials, etc.
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an anode (where oxidation can occur), a cathode (where reduction can occur), a
conductor (for electrons to flow) and an electrolyte (for the ions to flow).

With no protective oxide formation, which could serve to limit the corrosion rate,
the corrosion rate is generally expressed as a linear corrosion rate with:

TF ¼ A0exp
Q

KBT

� �
: ð13:108Þ

The prefactor A0 can be a strong function of the concentration of any corrosive
contaminants (e.g., chlorine or fluorine) in the water and a function of the acidity
(pH level) of the water.

13.2.1 Galvanic Series

When dissimilar metals are connected electrically, three elements of the corrosion
cell are assured: anode, cathode and conductor. Usually impure water (e.g., sea
water) or water vapor, with chloride or fluoride contaminants, can provide the fourth
key element (electrolyte) for the corrosion cell to work. The connection of two
dissimilar materials can be described as a Galvanic couple. The corrosion potential
of the couple is described by the potential difference between the two elements
forming the couple. The standard electrode potentials (relative to the hydrogen
electrode) of several elements are shown in Table 13.6.

Table 13.6 Standard electrode potentials

Metal Oxidation state Standard electrode potential: V0 (Volts)

Mg Mg2+ + 2e �2.36 More Anodic

Al Al3++ 3e �1.66

"

Zn Zn2++ 2e �0.76

Cr Cr3+ + 3e �0.74

Fe Fe2+ + 2e �0.44

Cd Cd2+ + 2e �0.40

Co Co2+ + 2e �0.28

Ni Ni2+ + 2e �0.25

Sn Sn2+ + 2e �0.14

Pb Pb2+ + 2e �0.13

H2 2H+ + 2e 0.00 Reference Electrode

Cu Cu2++ 2e 0.34 #
Ag Ag+ + e 0.80

Pd Pd2+ + 2e 0.99

Pt Pt2+ + 2e 1.20

Au Au3+ + 3e 1.50 More Cathodic
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For a Galvanic couple, under standard conditions (1-atmosphere, 1-molar solu-
tion, 25 �C) the driving force is the free energy difference per ion ΔG, given by:

ΔG ¼ zeð ÞΔV0, ð13:109Þ

where ΔV0 is the difference in standard electrode potentials, z is the ionic charge
state and e is the electron charge. A Galvanic couple composed of Fe and Cu can
potentially produce a large free energy reduction per oxidized Fe-ion:

ΔG ¼ 2eð Þ �0:44� þ0:34ð Þ½ � ¼ �1:56eV: ð13:110Þ

This is a very strong driving potential for corrosion to occur. The corrosion rate
(thickness x of Fe impacted per unit time t) is given by:

dx
dt

¼ Moleð Þwt
ρ

ℑ
zF

� �
, ð13:111Þ

where (Mole)wt is the molecular weight of Fe, ρ is the density of iron, z (¼2) is the
charge transferred during Fe oxidation, F is Faraday’s constant (96,500 C/mol), and
ℑ is the current density (current per unit corroded area). In general, one can write the
previous equation as:

dx
dt

¼ A0ℑ tð Þ: ð13:112Þ

One can see that the corrosion rate (metal thickness corroded per unit time) is
dependent on the corrosion current density ℑ. For a constant corrosion current, the
corrosion rate may be much faster in a small area and thus can form a corrosion pit.
Also, time-to-failure equations can be extracted, as done in Sects. 13.1.1, 13.1.2 and
13.1.3), when the current density ℑ(t) is specified as a function of time:

ðx
0

dx ¼ A0

ðTF
0

ℑ tð Þdt: ð13:113Þ

13.3 Humidity-Induced Oxidation/Reduction

Many examples of corrosion cannot be described simply as either dry oxidation or
wet oxidation. For many cases of corrosion, the process can be described more
accurately as humidity-induced oxidation/reduction. When a metal atom oxidizes,
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gives up its conduction electrons at the anode region of the metal, the metal ion must
be able to diffuse away from the corroded region for the corrosion process to
continue; otherwise, the local electric potential will increase thus offsetting the
chemical potential for oxidation. An example of humidity-induced oxidation/ reduc-
tion is shown in Fig. 13.46 for an IC during chip fabrication.

As discussed in Chap. 11 (corrosion of integrated circuits), the mobility on an
oxide surface increases exponentially with humidity (from 20 to 80 %) and expo-
nentially with temperature. Thus the time-to-failure equation for metal corrosion
under humid conditions can be written as:

TF ¼ A0 exp �a � %RHð Þ þ Q

KBT

� �
, ð13:114Þ

where a and Q are the corrosion time-to-failure kinetics.
The coefficient A0 in Eq. (13.114) can be a strong function of any corrosive

contamination (e.g., chlorides or fluorides) present on the surface of the metal.
Chlorides and fluorides are particularly important because they tend to reduce the
metal-oxide layer which is trying to serve as a self-protection layer.

Fig. 13.46 Under light exposure, a photovoltaic-induced voltage of ~0.7 V is created because of a
p/n junction in the silicon (to which the metal is connected). Due to this impressed potential, and
with the presence of humidity, the Cu will oxidize in the anode contact region (Cu ! Cu2+ + 2e)
and then the Cu ions will migrate to the cathode contact region for reduction and redeposition (Cu2+

+ 2e! Cu). The Cu-ion mobility along the oxide free surface (and thus the Cu oxidation/ reduction
rate) is very sensitive to the % relative humidity (%RH)
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Example Problem 15
During IC processing, Cu oxidation of the type shown in Fig. 13.46 can occur
while exposed Cu surface is waiting for dielectric-barrier/passivation deposi-
tion. To minimize such occurrences of exposed-Cu oxidation, the processing
time window is normally kept short. If the normal/safe processing window is
4 h at 45 % relative humidity, how much longer would the processing window
be at 35 %RH? Assume an exponential humidity dependence with parameter
a ¼ 0.12/%RH.

Solution
The acceleration factor becomes:

AF¼ exp a %RH1 �%RH2ð Þ½ �
¼ exp

0:12
%RH

45%RH� 35%RHð Þ
� �

¼ 3:32:

Therefore, the time window at 35 %RH becomes:

Time@35%RH ¼ AF � Time@45%RH

¼ 3:32 4hð Þ
¼ 13:3h:

13.4 Impact of Stress on Corrosion Rates

Mechanical stress can have a strong impact on the rate of corrosion. Regions of
relatively-high tensile stress will generally corrode more rapidly. This is illustrated in
Fig. 13.47. The upper convex curvature of a bent piece of metal is under tension

Bending

Fixed Fixed

FNeutral
Surface

Bottom Surface
Compressive

Top Surface
Tensile

Fig. 13.47 Simple bending, as shown, produces a top surface under tension and a bottom surface
under compression. The neutral stress region is also shown. The corrosion rate will be the greatest
on the top surface where the tensile stress is the greatest. This is because the tensile stress serves to
stretch the bonds, making the existing bonds less stable and more prone to oxidation
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while the lower surface is under compression. This mechanical stress reduces the
normal bonding energy of the atoms thus making oxidation/corrosion of the atoms
more likely to occur.

For humidity-driven corrosion of metals, regions of higher stress generally have
higher corrosion rates. As we have done many times in Chap. 11, let us try to
describe the corrosion rate constant (dependence on mechanical stress σ in the metal)
as a power-law:

k σ;%RH; Tð Þ ¼ k0 %RH; Tð Þ 1þ bσmð Þ: ð13:115Þ

One will note in Eq. (13.115) that, even when the mechanical stress σ in the
material goes to zero, the metal-oxidation rate constant simply reverts to its k0 value.
This is because metals are expected to oxidize even in a stress-free state. However,
with the addition of mechanical stress in the metal, the corrosion rate constant is
expected to increase. From the corrosion rate constant, Eq. (13.115), one can now
extract the time-to-failure equation:

TF σ;%RH; Tð Þ ¼ A0 1þ a0σ
mð Þ�1 exp �a � %RHð Þð þ Q

KBT

� �
ð13:116Þ

If the piece of metal in Fig. 13.47 is plastically deformed, such that a bend is still
evident after the stress is removed, then the bent region will corrode faster. This is
illustrated in Fig. 13.48 where a chain-link fence is shown. Note that the highest
corrosion rate occurs at the bends where the plastic deformation is the greatest. This
is the region where the bonds have been stretched the greatest making them less
stable and more prone to oxidation.

Fig. 13.48 Higher stress
regions (and more plastic
deformation) occur at the
crossover bending points of
this chain-link fence. Note
the enhanced corrosion rates
at these crossover/bent-wire
locations. Also note that for
each bend, the top surface
(in tension) generally shows
more corrosion than does
the underneath surface
(in compression)
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For permanent bends (as shown in the chain-link fence in Fig. 13.48) the amount
of plastic deformation in the metal will be assumed to be proportional to the radius of
curvature R for the bend, producing a time-to-failure equation which can be written
as:

TF σ;R; Tð Þ ¼ A0 1þ c0
1
R

� �m� ��1

exp �a � %RHð Þ þ Q

KBT

� �
: ð13:117Þ

Corrosion can also enhance the crack growth rate in stressed materials. As noted
earlier, the volume of the oxide can be much greater than the metal consumed thus
creating additional stress at the site of the crack. If a porous oxide formation is
assumed, such that the corrosion can continue, then the oxide formed will increase
the mechanical stress at the crack tip and will tend to accelerate crack growth. This is
illustrated in Fig. 13.49.

Problems

1. Two atoms are bonded and the bonding potential can be described by the (9, 1)
bonding potential, with an equilibrium bond energy 3.0 eV and equilibrium

bonding distance of 2.0A
�
. Calculate the value of the spring/stiffness constant

for small relative displacements of the two atoms.

Answer: 6.75 eV/(A
�
)2 ¼ 108 N/m

Fixed Fixed

Added Stress
To Crack Tip

Porous Oxide
Formation

Corrosion Can Enhance
Crack-Growth Rate

F

Fig. 13.49 Corrosion tends to occur along existing grain boundaries and/or cracks, especially in
tensile stress regions. If the oxide volume is larger than the metal consumed, then the metal-oxide
formation can act like a wedge thus causing the crack tip to come under additional stress and thus
accelerating the crack propagation. Assuming that the metal oxide formed is rather porous, then the
growth of the metal-oxide along the crack will continue and this will continue to exacerbate the
normal crack growth rate process. Similar oxidation processes can also accelerate fatigue
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2. The bond energy for two atoms is 2.2 eV and the equilibrium bond distance is

1.9 A
�
. Assuming that the bond can be described by a (9, 2) bonding potential:

(a) What is the maximum tensile force that the bond can support?
(b) What is the maximum bond extension, from equilibrium bonding distance,

before the bond fails?

Answers: a) 1.24 eV/A
�
¼ 1.98 � 10�4 dynes b) 0.36 A

�

3. If the Young’s modulus for a solid material is E ¼ 500 GPa, what is the
estimated single-bond energy for two atoms in the solid? Assume that the
bonding can be described by the (9, 2) potential with an equilibrium bonding

distance for the two atoms of 2 A
�
.

Answer: 222 GPa(A
�
)3 ¼ 1.4 eV

4. If the Young’s modulus of a solid material is E ¼ 250 GPa, estimate the elastic
energy density in the material when the material is tensile strained by 1 %(ε ¼
ΔL/L0 ¼ 0.01).

Answer: 1.25 � 10�2 GPa ¼ 7.81 � 1019 eV/cm3

5. The stress-strain curve for a material with modulus of E ¼ 400 GPa is very
similar to that shown in Fig. 13.14. If the elastic region extends to 1 % strain and
the fracture strain is 22 %, then calculate the toughness of this material. Assume
that the power-law model, which describes the stress versus strain relation in the
plastic region, is given by n ¼ 0.3.

Answer: 1.7 GPa ¼ 1.1 �1022 eV/cm3

6. Using the vacancy density results from Example Problem 4, show that the flux
J of vacancies, described by Eq. (4.10), has an activation energy of Q ¼
(Q)formation + (Q)diffusion.

7. Creep can occur in metals due to dislocation movement along slip planes due to
shear stress. If a pure tensile stress σT is applied, as illustrated in Fig. 13.10, then
a shearing stress τ is generated: τ ¼ σ sin(θ)cos(θ). Show that the maximum
shear stress occurs at θ ¼ 45�.

8. Creep, under constant tensile-stress conditions, can be an important failure
mechanism for gas turbines due to high angular speeds and high temperatures
during operation. To make sure that the turbine blades can withstand the
expected creep, a random selection of turbines was stressed to failure by using
an angular speed of 2� the expected operation conditions and at a temperature of
800 �C versus the expected operating temperature of 600 �C. The turbines started
to fail after one week under these accelerated conditions. How long would the
turbine blades be expected to last (due to creep) at the expected operational
conditions? Assume a creep exponent of at least n¼ 4, an activation energy of at
least 1.2 eV, and all stresses are well above the yield strength of the material.

Answer: 96 years
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9. Creep, under constant strain, can be an important failure mechanism for clamps/
fasteners. To make sure that a clamp is reliable at 200 �C, accelerated data was
taken for clamps tightened to 2X their normal stress level while stored at 300 �C.
The clamps lose their effectiveness after one week under these accelerated
conditions. Find the time-to-failure for the clamps under the operational condi-
tions at 200 �C. Assume a creep exponent of at least n ¼ 4, an activation energy
of at least 1.2 eV and that all stresses are well above the yield point of the
material.

Answer: 26 years

10. Time-zero cracks are found on the outside of a stainless steel storage vessel. If
the depth of the cracks is 20 mm, determine if fast facture is expected as the
vessel is pressurized to a level such that 400 MPa of tensile stress exists in the
metal. Assume that the stress concentration factor for the stainless steel is Kcrit¼
75(MN/m3/2).

Answer: Yes, since 400 MPa > σrupture ¼ 299 MPa, fast rupture is expected as
the vessel is being pressurized.

11. Aluminum-alloy rods were randomly selected and ramped-to-rupture at the
intended use temperature with a linear ramp rate of tensile stress of 50 MPa/
day. The breakdown distribution was described by a Weibull distribution with
(σrupture)63 ¼ 600 MPa and a Weibull slope of β ¼ 6. Assuming that the tensile
stress during normal operation is σop ¼ 100 MPa, a time-to-failure power-law
with a stress exponent of n¼ 6, and that the aluminum-alloy has no well defined
yield point:
(a) What fraction of the Al-alloy rods will fail immediately (<0.3 day) when

loaded with a tensile stress of 100 MPa?
(b) What fraction of the Al-alloy rods will fail after 10 years with a 100 MPa

loading?

Answers: a) 0.0021 % b) 7 %

12. In a certain batch of the aluminum-alloy rods, described in problem 11, some of
the rods were found to have small cracks. While the characteristic rupture
strength (σrupture)63 ¼ 600 MPa showed little/no change, the Weibull slope β
degraded to 4. Assuming that the tensile stress during normal operation is σop ¼
100 MPa and a time-to-failure power-law with a stress exponent of n¼ 6 for the
aluminum-alloy:
(a) What fraction of the metal rods will fail immediately (<0.3 day) when loaded

with a tensile stress of 100 MPa?
(b) What fraction of the metal rods will fail after 10 years with a 100 MPa

loading?

Answers: a) 0.08 % b) 16 %
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13. Steel rods were selected for a high-temperature and high tensile-stress applica-
tion. During a ramp-testing determination of the rupture strength of steel, at the
intended application temperature of 600 �C and with a ramp rate of
200 MPa/day, the following data was obtained: (σrupture)63 ¼ 1,600 MPa and
βrupture ¼ 10. The yield strength of the steel is 600 MPa and the intended
application is 700 MPa. Assuming a time-to-failure power-law with a stress
exponent of n ¼ 6:
(a) What fraction of the metal rods will fail immediately (<0.07 day) when

loaded with a tensile stress of 700 MPa?
(b) What fraction of the metal rods will fail after 10 years with a 700 MPa

loading?

Answers: a) 0.03 % b) 0.8 %

14. On a certain batch of steel rods described in Problem 13, small cracks were
discovered on some of the rods. While the characteristic Weibull strength
(σrupture)63 ¼ 1,600 MPa was virtually unchanged, the Weibull slope degraded
to β¼ 6. The yield strength of the steel is 600MPa and the intended application is
700MPa. Assuming a time-to-failure power-law with a stress exponent of n¼ 6:
(a) What fraction of the metal rods will fail immediately (<0.07 day) when

loaded with a tensile stress of 700 MPa?
(b) What fraction of the metal rods will fail after 10 years with a 700 MPa

loading?

Answers: a) 0.7 % b) 5.3 %

15. Metal poles, that are intended to support signs, undergo continual cyclical
stressing at the base plate due to changing wind conditions. To better understand
their reliability, such poles were randomly selected for cyclical stress testing.
Under an accelerating cyclical stress ofΔσ ¼ 800MPa, the poles started to crack
at the base plate after 5,000 cycles. How many cycles are the poles expected to
last at the effective operating condition of Δσ ¼ 200 MPa? Assume m ¼ 4.

Answer: 1.28 � 106 cycles.

16. The poles described in Problem 15 will be used to support an extended sign
which puts a mean stress tensile stress of 200 MPa in addition to cyclical stress
of Δσ ¼ 200 MPa. Assuming that the tensile strength in these poles is σTS ¼
800 MPa, calculate the expected number of cycles to failure.

Assume m ¼ 4.

Answer: 4.0 � 105 cycles

17. A metal rod has a thermal expansion coefficient of α ¼ 24 � 10�6/�C and a
modulus of E ¼ 70 GPa.
(a) If the metal rod is free to expand from 25 �C to 300 �C, what fractional

change in rod length would be expected?
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(b) If the rod is fully constrained (cannot move), how much thermal stress would
be generated in the rod?

Answers: a) 0.66 % b) 462 MPa

18. A metal component, in a certain application, will be thermal cycled from room
temp to an oxidizing ambient of 300 �C. To prevent oxidation of the metal at the
high temperatures, a thin ceramic coating is used on the metal component. The
concern is that cracks will develop in the ceramic layer during thermal cycling
thus exposing the metal to oxidation. To accelerate the cracking, the components
were thermal cycled from room temperature to 600 �C. If cracks start to develop
in the ceramic layer after 500 thermal cycles, how many crack-free cycles would
one expect from room temp to 300 �C? Assume that the ceramic material is hard/
brittle with a temperature-cycling power-law exponent of m ¼ 9.

Answer: 382,000 cycles

19. If left unprotected, how much faster will a scratch in the paint of your new car
oxidize at 80 vs. 40 % relative humidity. Assume an exponential model with
parameter: a ¼ 0.12 %RH.

Answer: 122 times faster
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Chapter 14
Conversion of Dynamical Stresses into
Effective Static Values

The time-to-failure models which were developed in the previous chapters assume
that the stress remains constant with time until the material fails. Even when we
discussed fatigue (a failure mechanism caused by a cyclical stress), it was assumed
that the stress rangeΔσ remained constant with time. However, seldom is the applied
stress constant with time, as illustrated in Fig. 14.1. In integrated circuits, the
currents and fields are continually changing during operation and generally depend
on the frequency of operation. In mechanical devices, the mechanical stress usually
varies with time (the mechanical stress in a metal light pole changes with wind
direction and with wind speed while the mechanical stress in the shaft of a rotor
changes with the number of rpm). Therefore, a question naturally arises: how does
one convert dynamical stresses (time-dependent stresses) ξ(t) into an effective static
form ξeffective so that all of the previously developed time-to-failure models can be
used? This chapter presents a methodology for that conversion.

1 Effective Static-Stress Equivalent Values

Figure 14.2 illustrates a dynamical (time-dependent) stress ξ(t): Also shown is an
effective static-stress equivalent ξeffective. We want to determine ξeffective such that it
will produce an equivalent amount of material/device degradation and thus the same
time-to-failure as the dynamical stress ξ(t):

One would expect that when ξ(t) > ξeffective; then the actual degradation rate for
the material/device during this time interval will be accelerated relative to degrada-
tion rate at ξeffective: However, when ξ(t) < ξeffective the actual degradation rate for the
material/device during this time interval will be decelerated relative to degradation
rate at ξeffective.

The time is either accelerated or decelerated, depending on whether the actual
stress level ξ(t) is above or below the constant ξeffective value. If one compares an
increment of time dt0 under constant stress ξeffective with an increment of time
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dt under actual accelerated/decelerated conditions, then the following equation must
hold:

dt0 ¼ AFξ tð Þ,ξeffectivedt: ð14:1Þ

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time: t (Arbitrary Units)

St
re

ss
: ξ

 (A
rb

itr
ar

y 
U

ni
ts

)

Fig. 14.1 Example of a dynamical (time-dependent) stress is illustrated. It will be assumed that the
stress amplitudes are sufficiently low that they only accelerate the normal physics-of-failure— they
do not change the normal physics-of-failure
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Fig. 14.2 Dynamical (time-dependent) stress ξ(t) is shown. ξeffective represents the effective static-
stress level that would produce the same amount of material/device degradation and same time-to-
failure as would the dynamical stress ξ(t): If the dynamical stress is also periodic, as shown, then
only the first period is needed in the ξeffective determination
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If one integrates both sides of the above equation from t ¼ 0 to t ¼ TF, then one
obtains:

TF ¼
ðTF
0

AFξ tð Þ,ξeffectivedt: ð14:2Þ

Thus, the compliance equation for dynamical stresses that ensures the material/
device degradation caused by the effective static-stress ξeffective is identical to the
degradation caused by the time-varying stress ξ(t) is given by:

1
TF

ðTF
0

AFξ tð Þ,ξeffectivedt ¼ 1: ð14:3Þ

If the dynamical stress is periodic, with a period P (as indicated in Fig. 14.2), then
we only need to determine ξeffective over one period (since it will be the same for all
other periods). The compliance equation for periodic dynamical stresses becomes:

1
P

ðP
0

AFξ tð Þ,ξeffectivedt ¼ 1: ð14:4Þ

As we will see in the remaining sections of this chapter, the compliance equations
permit us to determine ξeffective for arbitrary dynamical conditions.

2 Effective Static-Stress Equivalent Values When Using
Power-Law TF Models

The acceleration factor for the power-law TF model is given by:

AFξ tð Þ,ξeffective ¼
ξ tð Þ � ξyie1d

ξeffective � ξyield

� �n

: ð14:5Þ

Substituting the above equation into Eq. (14.4) and solving for ξeffective; one
obtains ξeffective when using the power-law TF model:

ξeffective � ξyield ¼
1
P

ðP
0

ξ tð Þ � ξyield
� �n

dt

2
4

3
5
1=n

: ð14:6Þ
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In Eq. (14.6) it will be understood that only when ξ(t) > ξyield does damage occur,
thus only the values of ξ(t) > ξyield should be included in the integral.1

Example Problem 1
Assuming a power-law time-to-failure model with n ¼ 4 and a negligibly
small yield stress, find the static effective stress ξeffective for the dynamic stress
ξ(t) shown in Fig. 14.2.

Solution
If the exact functional form of the stress ξ(t) is known, then neffective can be
determined from:

ξeffective ¼
1
P

ðP
0

ξ4 tð Þdt
2
4

3
5
1=4

:

Usually the exact functional form of the stress ξ(t) is not known (as the case
here) and has to be approximated. One can use numerical integration to find
the area under the curve. However, a much simpler and often-used approach is
to simply approximate the area under each lobe of the curve using the peak/
maximum value for height and for the width: use the full-width-at half-
maximum (fwhm). This is the conservative approach that we have used here
and is shown in Fig. 14.3.
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Fig. 14.3 For dynamical stresses which are roughly Gaussian in shape, the full width at half
maximum (fwhm) approach is often used to approximate the area under each lobe (If the
pulse is purely Gaussian, with standard deviation σ, then fwhm ¼ 2.355σ)

(continued)

1Recall from Chap. 13, if a yield stress truly exists, then when the applied stress is below the yield
stress no material degradation is expected.
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With n ¼ 4 and the yield stress equal to zero, one obtains:

ξeffective ¼ 1
P

Ð P
0 ξ4 tð Þdt

h i1=4

ffi 1
P

X
i

ξ4peak

� �
i
Δtð Þi

" #( )1=4

¼ 1
10 7:5ð Þ4 1:5ð Þ þ 3:2ð Þ4 1:5ð Þ
h in o1=4

¼ 4:7 arbitrary unitsð Þ

In summary, with a power-law exponent of n ¼ 4, one would expect a
constant stress of ξeffective ¼ 4.7 (arbitrary units) to produce the same amount
of degradation to the material/device as would the dynamical stress ξ(t) and,
therefore, produce an equivalent time-to-failure. Usually, the fwhm method is
a conservative approach to handling the reliability impact of pulses.

3 Effective Static-Stress Equivalent Values When
Using Exponential TF Models

The acceleration factor for the exponential TF model is given by:

AFξ tð Þ,ξeffective ¼ exp γ ξ tð Þ � ξeffective½ �f g: ð14:7Þ

Substituting the above equation into Eq. (14.4) and solving for ξeffective; one
obtains ξeffective for the exponential TF model:

ξeffective ¼
1
γ
ln

1
P

ðP
0

exp γξ tð Þ½ �dt
8<
:

9=
;: ð14:8Þ

Example Problem 2
Assuming an exponential time-to-failure model with γ ¼ 2 (in units of
reciprocal stress), find the effective static stress ξeffective for the dynamic stress
ξ (t) shown in Fig. 14.3.

(continued)
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Solution
Using an exponential time-to-failure model with γ ¼ 2 (in units of reciprocal
stress), along with Eq. (14.8) and Fig. 14.3, one can write:

ξeffective ¼
1
γ
ln

1
P

ð P

0
exp γξ tð Þ½ �dt

� 	

ffi 1
γ
ln

1
P

X
i

Δtð Þiexp γ ξpeak

 �

i

h i( )

¼ 1
2
ln

1
10

�
1:5ð Þexp 2 7:5ð Þ½ � þ 1:5ð Þexp 2 3:2ð Þ½ �

� 	
¼ 6:6:

In summary, with an exponential time-to-failure model and with
γ ¼ 2 (in units of reciprocal stress), we would expect a constant stress of
ξeffective ¼ 6.6 (arbitrary units) to produce the same amount of material/device
degradation and time-to-failure as would the dynamic stress ξ(t):

4 Conversion of a Dynamical Stress Pulse into
a Rectangular Pulse Stress Equivalent

It would be very useful if one could somehow convert a rather complicated dynam-
ical stress pulse, over some time interval ta–tb, into a rectangular pulse effective
stress which would produce an equivalent amount of material/device degradation
over this same time interval ta–tb. This is illustrated in Fig. 14.4.

The compliance equation for dynamical stresses can again aid us in developing
the effective rectangular pulse stress equivalent of a single dynamical pulse. Since
the amount of degradation to the material/device must be equivalent over the region

ξeffectiveξ(t)

Time

ta tb

Fig. 14.4 A single
dynamical stress pulse ξ (t)
is shown over the time
interval ta–tb. ξeffective
represents the effective
rectangular pulse, over the
same time interval, and is
expected to produce an
equivalent amount of
degradation to the material/
device
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a–b, then we can restate the compliance equation for the conversion of a dynamic
pulse into the rectangular pulse stress equivalent

1
tb � tað Þ

ðtb
ta

AFξ tð Þ,ξeffectivedt ¼ 1: ð14:9Þ

4.1 Effective Rectangular Pulse Stress-Equivalent Values
for Power-Law TF Models

Since the acceleration factor for the power-law TF model is given by:

AFξ tð Þ,ξeffective ¼
ξ tð Þ � ξyield

ξeffective � ξyield

� �n

, ð14:10Þ

the compliance equation yields the effective rectangular pulse stress-equivalent
value ξeffective for the power-law exponential model:

ξeffective � ξyield ¼
1

tb � tað Þ
ðtb
ta

ξ tð Þ � ξyield
� �n

dt

2
4

3
5
1=n

ð14:11Þ

In Eq. (14.11) it will be understood that damage only occurs when ξ(t) > ξyield.
Thus, only the values of ξ(t) > ξyield should be included in the integral.

4.2 Effective Rectangular Pulse Stress-Equivalent Values
for Exponential TF Models

Since the acceleration factor for the exponential TF model is given by:

AFξ tð Þ,ξeffective ¼ exp γ ξ tð Þ � ξeffective½ �f g, ð14:12Þ

the compliance equation yields the effective rectangular pulse stress-equivalent
value ξeffective for the exponential TF model

ξeffective ¼
1
γ
ln

1
tb � ta

ðtb
ta

exp γξ tð Þ½ �dt
8<
:

9=
;: ð14:13Þ
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4.3 Numerical Integration

Since the determination of the rectangular pulse stress equivalents of dynamical
pulses [Eqs. (14.11) and (14.13)] generally requires the integration of rather com-
plicated functions, a numerical method of integration is suggested.

The Composite Trapezoidal and Simpson’s Rule numerical method of integration
is illustrated in Fig. 14.5. The method begins by segmenting the total area into
m subintervals (of equal spacing) Δt. The height of each rectangular area is given by
[f (ti) + f (ti�1)]/2. Summing the areas of m such rectangles gives:

ðb
a

f tð Þdt ffi Δt
Xm
i¼1

f tið Þ þ f ti � 1ð Þ
2

� 

¼ Δt

Xm
i¼1

f i, ð14:14Þ

where

Δt ¼ tb � ta
m

and f i ¼
f tið Þ þ f ti�1ð Þ

2

� 

: ð14:15Þ

This method of numerical integration is illustrated in Fig. 14.5.
Thus, ξeffective for a rectangular pulse equivalent of a dynamical pulse, using the

power-law TF model, becomes:

ξeffective � ξyield ¼
1

tb � tað Þ
ðtb
ta

ξ tð Þ � ξyield
� �n

dt

2
4

3
5
1=n

ffi Δt

tb � ta

Xm
i¼1

ξnð Þi
" #1=n

,

ð14:16Þ

fi =

fi

fi

f(t)

f (t ) dt ≅ Δt Σ∫

Δt =

Δt

Time

m

b m

i =1a

2

ta tb

tb – ta

ti

f (t i) + f (t i–1)

ti–1

Fig. 14.5 Numerical
integration method is
illustrated using the
Composite Trapezoidal and
Simpson’s Rule
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where

ξnð Þi ¼
ξ tið Þ � ξyield
� �n þ ξ ti�1ð Þ � ξyield

� �n
2

: ð14:17Þ

It is understood that damage only occurs when the stress level ξ(t) is greater than
ξyield. Therefore, only values ξ(t) > ξyield should be included in the integral/
summations.

ξeffective for a rectangular pulse stress equivalent of a dynamical pulse, using the
exponential model becomes:

ξeffective ¼
1
γ
ln

1
tb � ta

ðtb
ta

exp γξ tð Þ½ �dt
8<
:

9=
;

ffi 1
γ
ln

Δt
tb � ta

Xm
i¼1

exp γξð Þ½ �i
( )

,

ð14:18Þ

where

exp γξð Þ½ �i ¼
exp γξ tið Þ½ � þ exp γξ ti�1ð Þ½ �

2
: ð14:19Þ

Example Problem 3
Shown in Fig. 14.6 is a dynamic stress pulse given by:

ξ tð Þ ¼ 6 sin π t=5ð Þ½ � arbitrary unitsð Þ:

Using numerical integration, divide the pulse area into m ¼ 20 area seg-
ments of equal width Δt ¼ 0.25 and determine the effective rectangular pulse
equivalent ξeffective for the dynamical pulse assuming:

(a) power-law model with n ¼ 4 and negligibly small yield stress, and
(b) exponential model with γ ¼ 2 (in units of reciprocal stress).

Solution

(a) For the power-law model (with n ¼ 4 and ξyield ¼ 0) we have:

ξeffective ¼ 1
tb�ta

Ð tb
ta
ξn tð Þdt

h i1=n
ffi Δt

tb�ta

Xm
i¼1

ξnð Þi
" #1=n

¼ 0:25
5�0

X20
i¼1

ξ4

 �

i

" #1=4

(continued)
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Fig. 14.6 A single pulse of waveform ξ(t) ¼ 6 sin [π (t/5)] is shown. ξeffective is an effective
rectangular pulse for this dynamical pulse

The details of the numerical integration are shown in the following spread-
sheet. In summary, using a power-law TF model with n ¼ 4, we obtain an
effective rectangular pulse value of ξeffective ¼ 4.70 (arbitrary units).

ξ tð Þ ¼ 6 sin π t=5ð Þ½ �
tb � ta ¼ 5

m¼ 20

Δt¼ tb � tað Þ=m ¼ 0:25

n¼ 4

t ξ(t) ξ(t)4
Δt

tb � ta

ξn tið Þ þ ξn ti�1ð Þ
2

� 


0.00 0.00 0.00

0.25 0.94 0.78 0.02

0.50 1.85 11.82 0.31

0.75 2.72 55.05 1.67

1.00 3.53 154.70 5.24

1.25 4.24 324.00 11.97

1.50 4.85 555.19 21.98

1.75 5.35 816.83 34.30

2.00 5.71 1,060.31 46.93

2.25 5.93 1,233.35 57.34

2.50 6.00 1,296.00 63.23

(continued)
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2.75 5.93 1,233.34 63.23

3.00 5.71 1,060.30 57.34

3.25 5.35 816.82 46.93

3.50 4.85 555.17 34.30

3.75 4.24 323.99 21.98

4.00 3.53 154.69 11.97

4.25 2.72 55.05 5.24

4.50 1.85 11.82 1.67

4.75 0.94 0.78 0.31

5.00 0.00 0.00 0.02

Sum ¼ 486.00

ξeffective ¼ (Sum)(1/4) ¼ 4.70

(b) For the exponential model with γ ¼ 2 (reciprocal stress units):

ξeffective ¼
1
γ
ln

1
tb � ta

ðtb
ta

exp γξ tð Þ½ �dt
8<
:

9=
;

ffi 1
γ
ln

Δt
tb � ta

Xm
i¼1

exp γξð Þ½ �i
( )

¼ 1
2
ln

0:25
5� 0

X20
i¼1

exp γξð Þ½ �i
( )

:

The numerical integration is shown in the spreadsheet below.

ξ tð Þ ¼ 6 sin π t=5ð Þ½ �
tb � ta ¼ 5

m¼ 20

Δt ¼ tb � tað Þ=m ¼ 0:25

γ ¼ 2

t ξ(t) Exp[γξ(t)]

Δt
tb � ta

exp γξ tið Þ½ � þ exp γξ ti�1ð Þ½ �
2

� 

0.00 0.00 1.00

0.25 0.94 6.54 0.19

0.50 1.85 40.78 1.18

0.75 2.72 232.27 6.83

(continued)
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1.00 3.53 1,156.83 34.73

1.25 4.24 4,843.04 150.00

1.50 4.85 16,452.28 532.38

1.75 5.35 44,006.49 1,511.47

2.00 5.71 90,462.36 3,361.72

2.25 5.93 140,402.18 5,771.61

2.50 6.00 162,754.79 7,578.92

2.75 5.93 140,400.24 7,578.88

3.00 5.71 90,459.89 5,771.50

3.25 5.35 44,004.72 3,361.62

3.50 4.85 16,451.43 1,511.40

3.75 4.24 4,842.73 532.35

4.00 3.53 1,156.75 149.99

4.25 2.72 232.25 34.72

4.50 1.85 40.78 6.83

4.75 0.94 6.53 1.18

5.00 0.00 1.00 0.19

Sum ¼ 37,897.69

ξeffective ¼ (1/γ) ln(Sum) ¼ 5.27
In summary, for the exponential model with γ ¼ 2 (reciprocal stress units),

ξ effective ¼ 5.27 (arbitrary units).

5 Effective Static Temperature Equivalents

Similar to stress, the temperature T of the material/device is not usually constant
during device operation. For example, a computer generally runs hotter (higher
power dissipation) during heavy number crunching (many computations per sec)
versus the sleep mode (a period of relative inactivity). An electrical power trans-
former (from your local utility company) generally runs hotter in the summer months
versus the winter months since the transformer is continuously exposed to the
ambient weather conditions. Engine components are obviously much hotter when
the engine is running.

Thus, for reliability estimations, it would be very useful to have an effective static
temperature Teffective (as illustrated in Fig. 14.7) which produces an equivalent
amount of material/device degradation [versus the dynamical temperature T(t)].

One can use the compliance equation to determine Teffective over any interval
ta–tb:

1
tb � tað Þ

ðtb
ta

AFT tð Þ,Teffective
dt ¼ 1, ð14:20Þ

316 14 Conversion of Dynamical Stresses into Effective Static Values



where

AFT tð Þ,Teffective
¼ exp

Q

KB

1
Teffective

� 1
T tð Þ

� �� 

: ð14:21Þ

Using Eq. (14.21) and solving Eq. (14.20) for Teffective, one obtains:

Teffective ¼ � Q=KBð Þ

ln
1

tb � ta

ðtb
ta

exp � Q

KBT tð Þ
� 


dt

8<
:

9=
;

ffi � Q=KBð Þ
ln

Δt
tb � ta

Xm

i¼1
exp � Q

KBT

� �� 

i

� 	 ,

ð14:22Þ

where

exp � Q

KBT

� �� 

i

¼
exp � Q

KBTi

� �
þ exp � Q

KBTi�1

� �
2

: ð14:23Þ
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Fig. 14.7 The temperature of a device is seldom constant. The effective static temperature Teffective
is of great reliability importance
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Example Problem 4
The time dependence of the temperature shown in Fig. 14.7 is given by:

T tð Þ ¼ 300K þ 100K sin
π

5
t

� �
:

Assuming an activation energy of Q¼ 1.0 eV, determine the effective static
temperature over the time interval from 0 to 5.

Solution
Using,

T tð Þ ¼ 300þ 100 sin π t=5ð Þ½ �
tb � ta ¼ 5

m¼ 20
Δt¼ tb � tað Þ=m ¼ 0:25
Q¼ 1ev
KB ¼ 8:625� 10�5eV=K

the numerical integration is shown in the following spreadsheet.

T tð Þ ¼ 300þ 100 sin π t=5ð Þ½ �
tb � ta ¼ 5

m¼ 20
Δt¼ tb � tað Þ=m ¼ 0:25
Q¼ 1 ev
KB ¼ 8:625� 10�5eV=K

t T(t)
exp � Q

KBT

� 
 Δt
tb � ta

exp
Q

KBTi

� 

þ exp � Q

KBTi�1

� 

2

2
664

3
775

3.75 370.71 2.61E � 14 2.16E � 15

4.00 358.78 9.23E � 15 8.84E � 16

4.25 345.40 2.64E � 15 2.97E � 16

4.50 330.90 6.07E � 16 8.12E � 17

4.75 315.64 1.12E � 16 1.80E � 17

5.00 300.00 1.64E � 17 3.20E � 18

Sum ¼ 7.59E � 14

Teffective ¼ �(Q/KB)/ln(Sum) ¼ 384
In summary, the effective static temperature is Teffective ¼ 384 K ¼ 111 �C.
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6 Mission Profiles

A mission (or use) profile is a succinct description of the intended use conditions for
the device throughout its lifetime. It is very important, especially during the design
and materials selection phase of a new device, that the mission profile is fully
comprehended. Now that we have learned how to convert dynamic stresses into
effective static stress equivalents, these can be used for a succinct description of the
mission profile expected for the device.

The mission profile describes the expected use conditions for the device during its
entire lifetime. An example of a mission profile is shown in Table 14.1. The expected
lifetime for the device is 10 years (120 months).

If a power-law time-to-failure model is used, then the effective constant-stress
value ξeffective for the entire mission profile becomes:

ξð Þeffective � ξyield ¼ 1
TF

ðTF
0

ξ tð Þ � ξyield
� �n

dt

2
4

3
5
1=n

ffi 1
TF

X
i

Δtð Þi ξ ið Þ � ξyield
h in" #1=n

¼
X
i

dycð Þi ξ ið Þ � ξyield
h in" #1=n

,

ð14:24Þ

where the duty cycle (dyc) is given by:

dycð Þi ¼
Δtð Þi
TF

: ð14:25Þ

The duty cycle is simply the fraction of time that the stated stress is active during
the expected 10 years (120 months) of use. It is understood in Eq. (14.24) that
damage only occurs when the stress level ξ(t) is greater than ξyield. Thus, only values
ξ(t) > ξyield should be included in the integral/summations.

If an exponential TF model is used, then the effective constant-stress value
ξeffective for the entire mission becomes:

Table 14.1 Stress Mission
profile for a device

Stress: ξ (arbitrary units) Time (months) Duty cycle

ξ1 1 0.008

ξ2 7 0.058

ξ3 12 0.100

ξ4 70 0.583

ξ5 24 0.200

ξ6 6 0.050

Sum ¼ 120 1.000
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ξeffective ¼
1
γ
ln

1
TF

ðTF
0

exp γξ tð Þ½ �dt
8<
:

9=
;

ffi 1
γ
ln

X
i

dycð Þiexp γξi½ �
( )

:

ð14:26Þ

Similarly, a mission profile can be described for the expected use temperature and
is shown in Table 14.2. The expected lifetime for the device is 10 years.

The effective constant-temperature equivalent Teff for the full 10 years
(120 months) of device use can be easily determined in terms of the temperature
Ti for each time interval and its duty cycle (dyc)i:

Teffective ¼ � Q=KBð Þ

ln
1
TF

ðtb
ta

exp � Q

KBT tð Þ
� 


dt

8<
:

9=
;

ffi � Q=KBð Þ

ln
Xm
i¼1

dycð Þiexp � Q

KBTi

� �( ) :

ð14:27Þ

Example Problem 5
For the mission profile shown in Table 14.2, find the effective static temper-
ature equivalent for the expected 10 years of use. Assume an activation energy
of 1 eV.

Solution

Teffective ¼ � Q=KBð Þ
In

Pm
i¼1

dycð Þiexp � Q
KBTi

� �� 	
:

The following spreadsheet was used to determine Teffective.

(continued)

Table 14.2 Thermal Mission
profile for device

Temp ( C) Time (months) Duty cycle

180 1 0.008

150 7 0.058

125 12 0.100

95 70 0.583

75 24 0.200

25 6 0.050

Sum ¼ 120 1.000
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Q ¼ 1 eV

KB ¼ 8.62E � 5 eV/K

Temp (�C) Temp (K) Time (months) Duty cycle (dyc) dycð Þi exp � Q
KBTi

� �h i
180 453 1 0.00833 6.29394E � 14

150 423 7 0.05833 7.16528E � 14

125 398 12 0.10000 2.1936E � 14

95 368 70 0.58333 1.18879E � 14

75 348 24 0.20000 6.65869E � 16

25 298 6 0.05000 6.19719E � 19

120 1.00000 Sum ¼ 1.69083E � 13

Teff ¼ �(Q/KB)/Ln(Sum) ¼ 394.2K ¼ 121.2 �C
With an activation energy of Q ¼ 1 eV, the effective static temperature Teff

for this mission profile is Teff ¼ 121 �C

Example Problem 6
The voltage dropped across a 70 Å thick SiO2 capacitor dielectric is shown
below for one period. Assuming that the operating temperature is 105 �C and
that the field acceleration can be estimated by:

γ ¼ peff
KBT

ffi 13e A
�

KBT
¼ 13� 10�8e cmð Þ

8:625� 10�5eV=K

 �

105þ 273ð ÞK
¼ 4:0cm=MV ¼ 4:0� 10�6cm=V,

find the effective voltage Veff for the time-dependent dielectric breakdown
(TDDB) failure mechanism.

(continued)
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Solution
The stress ξ in this example problem, which produces TDDB, is electric field
E. From Eq. (14.26) one can write:

Eeffective ffi 1
γ
ln

X
i

dycð Þiexp γEi½ �
( )

:

Since E ¼ V/tox, where tox is the thickness of the dielectric, then one can
write the effective voltage for TDDB as:

V effective ffi tox
γ

ln
X
i

dycð Þiexp γ=toxð ÞVi½ �
( )

:

tox ¼ 7.00E � 07 cm

γ ¼ 4.00E � 06 cm/V

Voltage (V) Duty cycle (dyc)iexp[(γ/tox)Vi]

3.3 3.00e � 01 4.64E + 07

3.6 1.50E � 01 1.29E + 08

3.9 1.00E � 01 4.77E + 08

4.1 4.00E � 02 5.98E + 08

2.5 2.00E � 01 3.20E + 05

3.6 2.00E � 01 1.72E + 08

4.8 1.00E � 02 8.17E + 09

Sum ¼ 9.59E + 09

V effective ¼ (tox/γ)ln(Sum) ¼ 4.02 volts
Veffective determination is shown in the following spreadsheet. In summary,

the mission profile for this dielectric is equivalent to an effective constant
voltage of Veffective ¼ 4.02 V for TDDB.

Example Problem 7
The mission profile is shown in Fig. 14.8 for a conductor.

Because the current density is rather high, one would like to find the
effective current density for electromigration (EM)-induced failure. Since
EM-induced failure is impacted by the average current density, find the
average current density Jave for the EM mission profile shown Fig. 14.8.

(continued)
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Fig. 14.8 Mission profile for current densities in a conductor over one period P

Solution
The average current density can be easily determined using Eq. (14.24) with
n ¼ 1:

Jeffective � Jcrit ¼
X
i

dycð Þi Ji � Jcrit½ �:

Assuming that Jcrit is negligibly small for the conductor length, the follow-
ing spreadsheet was used to calculate Jeffecitve ¼ Jave.

Current density (A/cm2) (Duty cycle)i (dyc)i[J]i
5.00E + 05 3.75E � 01 1.88E + 05

7.00E + 05 2.25E � 01 1.58E + 05

5.80E + 05 2.50E � 01 1.45E + 05

0.00E + 00 5.00E � 02 0.00E + 00

4.70E + 05 1.00E � 01 4.70E + 04

Sum ¼ 5.37E + 05

Jeffective ¼ Jave ¼ Sum ¼ 5.37E + 05 A/cm2

In summary, for EM-induced failures, the effective current density Jeffective
is simply the average current density Jave. However, the assumption here is—
the constituent current densities, in the mission profile, are each of sufficiently
low value that significant Joule heating (self heating) is not an issue for the
conductor, i.e., the conductor temperature remains constant. If this is not the
case, then the conductor temperature will have to be taken into account and the
effective temperature Teff will have to be calculated, as in example problem
5.When Jeffective¼ Jave is obtained, the time-to-failure TF goes as TF ~ (Jave)

�2

for aluminum-alloys and as TF ~ (Jave)
�1 for copper.
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Example Problem 8
The mission profile, for fatigue considerations, is shown below. Find the
effective stress range (Δσ)effective for the mission profile. Assume a
stress range exponent of n ¼ 4 and (Δσ)yield ¼ 400 MPa.

Stress range: Δσ (MPa) (Duty cycle)i
200 0.10

400 0.25

700 0.36

900 0.23

1,200 0.05

1,400 0.01

Solution
The effective stress range (Δσ)effective can be determined from Eq. (14.24) with
n ¼ 4 and (Δσ)yield ¼ 400 MPa:

Δσð Þeffective � Δσð Þyield ffi
X
i

dycð Þi Δσð Þi � Δσð Þyield
h i4" #1=4

:

Recall that no damage is occurring when the stress range is less than
(Δσ)yield; thus, only the stress range above (Δσ)yield is used in the following
spreadsheet for the effective stress range (Δσ)eff calculation.

Stress range:
Δσ (MPa)

Stress range above yield:
(Δσ)i�(Δσ)yield(MPa)

(Duty
cycle)i (dyc)i[(Δσ)i � (Δσ)yield]

n

200 0.00 0.10 0

400 0.00 0.25 0

700 300.00 0.36 2.92E + 09

900 500.00 0.23 1.44E + 10

1,200 800.00 0.05 2.05E + 10

1,400 1,000.00 0.01 1.00E + 10

Sum ¼ 4.78E + 10

(Δσ)effective � (Δσ)yield ¼ [Sum]1/4 ¼ 468 MPa.
In summary, for the mission profile shown, the effective stress range is

(Δσ)effective � (Δσ)yield ¼ 468 MPa or (Δσ)effective ¼ 868 MPa.

7 Avoidance of Resonant Frequencies

There is a strong caution that we must discuss before this chapter ends. Nearly every
component/system has certain natural or resonant frequencies that must be avoided.
If the applied time-dependent stress ξ(t) is periodic, with a frequency close to a
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system’s natural/resonant frequency, then unexpectedly large amplitude oscillations
can occur. This is true for both mechanical systems and circuits. If the applied stress
is near a natural resonance for the system, then what might have been initially
thought to be a rather benign stress level, may actually cause severe damage to the
system. This is discussed in great detail in the next chapter (Chap. 15).

One has probably heard stories about the large amplitude oscillations that can
occur when a dog simply trots across a suspension bridge. Certainly, most of us have
experienced something similar when a dog simply trots across a wooden floor in our
house. The entire room may tend to shake as the dog trots across the floor. Even
though the energy input per step associated with the dog’s movement is rather small,
an oscillator (close to its natural frequency) is very effective in absorbing the input
energy. Thus, the amplitude of the oscillation tends to grow rapidly as the dog trots.

The equations developed in this chapter assume that the applied dynamical stress
ξ(t) is not close to a natural frequency for the device/system. Remember— because
of resonance, a soprano can shatter a wine glass with simply the voice!

Problems

1. The electric field E in a capacitor dielectric is expected to operate at 4 MV/cm
during a period of 16 ns. However, during this period, a sharp rise/pulse in the
electric field (rising from 4 to 8 MV/cm) occurs between 4 and 7 ns. Using the
full-width-at-half-maximum approach for the pulse, calculate the effective con-
stant electric field for the 16 ns period shown. Assume an exponential field
acceleration parameter of γ ¼ 4.0 cm/MV.
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Answer: Eeffective ¼ 7.48 MV/cm
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2. A mechanical component experiences a time-dependent tensile-stress wave-
form given by:

σ tð Þ ¼ 1:863� 10�5MPa

hð Þ9 tð Þ9exp � t

8

� �10
� 


:

The shape of the waveform is shown below.
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Assuming a creep power-law exponent of n ¼ 4:

(a) Find the effective rectangular pulse over the time interval from 4 h to 10 h.
(b) Assuming the period is 24 h, what is the effective constant value of the stress

over this period?

Answer: (a) 599 MPa (b) 424 MPa

3. For wind turbine use, the energy contained in the wind is a critically important
parameter. The energy contained in the wind is proportional to the square of the
wind speed. For Dallas, Texas, the following mean wind speeds were reported
by month:

(a) Find the mean value for the wind speed S for the entire year.

Month # Days Wind speed: S (mph) (Duty cycle)i
January 31 11.0 0.085

February 28 11.7 0.077

March 31 12.6 0.085

April 30 12.4 0.082

May 31 11.1 0.085

June 30 10.6 0.082

July 31 9.8 0.085

(continued)
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Month # Days Wind speed: S (mph) (Duty cycle)i
August 31 8.9 0.085

September 30 9.3 0.082

October 31 9.7 0.085

November 30 10.7 0.082

December 31 10.8 0.085

(b) Given the energy in the wind goes as the square of the wind speed, find the
constant effective wind speed (S)effective for turbine use during the
entire year.

Answers:

(a) Mean Speed ¼ 10.7 mph
(b) (S)effective ¼ 10.8 mph

4. The mission profile is shown below for a mechanical component. Assuming that
the mechanical component is a metal that has no yield point and a power-law of
n ¼ 4 for creep, find the effective constant stress σeffective for the full 10 years
(120 Months) of service.

Stress level: σ (MPa) Time (months) (Duty cycle)i
0 1 0.008

100 2 0.017

200 4 0.033

300 6 0.050

400 18 0.150

500 35 0.292

600 25 0.208

700 15 0.125

800 9 0.075

900 4 0.033

1,000 1 0.008

Total ¼ 120 1.000

Answer: σ effective ¼ 612 MPa

5. Using the mission profile for the metal component in Problem 4, what would be
the effective constant-stress value σ effective for the full 10 years (120 months) of
service if the metal component has a power-law stress exponent of n ¼ 4 for
creep and has a yield strength of 400 MPa?

Answer: σ effective � σ yield ¼ 283 MPa or σ effective ¼ 683 MPa

6. Using the mission profile for the metal component in Problem 4, what would be
the effective constant-stress value σ ffective for the full 10 years (120 months) of
service if a power-law exponent of n ¼ 6 for creep is assumed and no defined
yield strength?
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Answer: σeffective ¼ 650 MPa

7. Using the mission profile for the metal component in Problem 4, what would be
the effective constant-stress value σeffective for the full 10 years (120 months) of
service if a power-law exponent of n ¼ 6 for creep is assumed and a yield
strength of 400 MPa?

Answer: σ effective � σ yield ¼ 331 MPa or σ effective ¼ 731 MPa

8. EM is a concern for a certain conductor. The current densities in the conductor
are shown below. What is the average current density?

Current density: J (A/cm2) (Duty cycle)i
5.00E + 05 0.4

7.00E + 05 0.3

9.00E + 05 0.2

1.20E + 06 0.1

Answer: (J )average ¼ 7.1 � 105 A/cm2

9. The mission profile for a component, with fatigue concerns, is shown below.
Assuming a power-law exponent of n¼ 4 and no elastic range, find the effective
constant value for the stress range (Δσ)effective.

Stress range: Δσ (MPa) (Duty cycle)i
300 0.10

400 0.25

500 0.36

600 0.23

700 0.05

800 0.01

Answer: (Δσ)effective ¼ 524 MPa

10. A silica-based capacitor dielectric of thickness 45Å will see the following
voltages during operation. What is the effective constant voltage Veff for
TDDB? Assume an exponential field acceleration parameter of γ ¼ 4.0 cm/ MV.

Voltage (V) (Duty cycle)i
2.5 3.00E � 01

2.8 1.50E � 01

3.1 1.00E � 01

3.4 4.00E � 02

3.7 2.00E � 01

4.0 2.00E � 01

4.3 1.00E � 02

Answer: Veffective ¼ 3.9 V
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11. The thermal profile for a device is shown below. Assuming an activation energy
of 0.7 eV, what is the effective constant-temperature Teffective?

Temp (�C) Temp (K) Time (months) Duty cycle (dyc)

180 453 1 0.00833

150 423 7 0.05833

125 398 12 0.10000

95 368 70 0.58333

75 348 24 0.20000

25 298 6 0.05

Answer: Teffective ¼ 112 �C
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Chapter 15
Resonance and Resonance-Induced
Degradation

The time-to-failure models (developed in Chap. 14) for periodic stresses assumed
that the periodic stresses were not associated with any resonant frequencies for the
component/system. However, nearly every component/system has certain natural
(or resonant) frequencies that must be avoided. If the applied time-dependent stress
ξ(t) is periodic, with a frequency close to a system’s natural frequency υ, then this
condition is referred to as resonance. Resonance can produce unexpectedly large-
amplitude oscillations. This is true for both mechanical systems and electrical
systems. Because of resonance, what might have been thought initially to be a rather
benign stress condition can actually be a severe stress condition.

1 Natural/Resonant Frequency

You have probably heard of and/or seen stories about the large amplitude oscilla-
tions that can occur when a dog simply trots across a suspension bridge. Or, you may
have seen pictures of the Tacoma bridge failure during pulsating wind conditions.1

As previously mentioned at the end of the last chapter, because of resonance, many
of the objects in the room may vibrate rather strongly as the dog trots across a
wooden floor. Even though the energy-input per-step associated with the dog’s
movement is relatively small, an oscillator (that is acted on by a periodic stress

1For many years, the Tacoma bridge failure was attributed simply to resonance due to pulsating
wind conditions. More recently this has been questioned.
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ξ(t) close to the oscillator’s natural/resonant frequency υ) can be very effective in
absorbing the input energy. Thus, the amplitude of the oscillations may grow rapidly
as the dog trots across the wooden floor.

Every system has certain natural frequencies υ that make it unstable when a
periodic stress ξ(t) of frequency f is applied that is very close to the system’s natural
frequency υ. Shown in Fig. 15.1 is a very simple system (a block) that is captured in a
vertical metastable state. We will assume that the frictional forces at the base of the
block are sufficient to keep the block from sliding when pushed on by the external
force. We want to see if a certain constant external force Fext can tip/activate the
block from the vertical to the horizontal position.

The amount of constant-force Fext work required to tip/activate the block from
the vertical to the horizontal position is FextΔx � Q, where Q is the needed
activation energy to tip the block. Thus, it would seem to be impossible that a
small constant external force can tip/activate the block if Fext < Q/Δx. However,
if the small force is not constant, but is actually periodic (with a frequency f close
to the natural/resonant frequency υ for the block), then amazing things can
happen.

Example Problem 1
A block is resting on a rough surface (with a high coefficient of sliding
friction) that prevents block sliding. Using the principle of virtual work and
conservation of energy, show that it requires only half the force to tip the block
when the force is applied at the top of the block versus the middle.

(continued)

CM

External
Force Fext

Δx

Q

Fig. 15.1 Block is captured
in a metastable vertical state.
The center of mass (CM) is
trapped in a potential well
which gives the vertical state
some degree stability. The
frictional forces at the base
of the block are sufficient to
keep the block from sliding
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Infinitesimal virtual work δw done by an external force is defined as,

δw ¼ ~Fext • d~x:

Using conservation of energy, the work done by (Fext)1 to tip the block must
be the same amount of work as done by (Fext)2. Therefore, we have

Fextð Þ2x2 ¼ Fextð Þ1x1 ) Fextð Þ2 ¼
x1
x2

� �
Fextð Þ1:

The angle at which the block is tipped is θcrit. Thus, we have the
relationship:

x1
x2

¼ L=2ð Þ tan θcritð Þ
L tan θcritð Þ ¼ 1

2
:

Therefore,

(continued)
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Fextð Þ2 ¼
1
2

Fextð Þ1:

Wewant to finish this simple example problemwith noting that, by using the
principle of virtual work and conservation of energy, we achieved the same
result that would have been obtained if we had used torque analysis. Taking the
moments about a fixed point at the base (e.g., point B in Fig. 15.1), one obtains:

Fextð Þ2 Lð Þ ¼ Fextð Þ1 L=2ð Þ
∴ Fextð Þ2 ¼

1
2
Fextð Þ1

At first glance, it is hard to imagine how a rigid solid block can behave like an
oscillator. However, as we can see from Fig. 15.2, the center of mass (CM) is
momentarily trapped in a potential well. Furthermore, as illustrated in Fig. 15.2,
we see that we can approximate this potential well with a parabolic potential
V(x) [which is the potential for a simple harmonic oscillator].

The parabolic potential V(x) is given by:

V xð Þ ¼ 1
2
ks xð Þ2, ð15:1Þ

where x is the displacement from equilibrium and ks is the effective spring constant
for this harmonic oscillator. For this parabolic potential, the restoring force F is
given by:

F ¼ � dV xð Þ
dx

¼ �ksx, ð15:2Þ

The natural/resonant frequency υ for this oscillator is given by2:

CM x 

V(x) = 1
2 ks (x)2V(x)

Qxcrit

Fig. 15.2 Parabolic
potential V(x) is a
reasonably good
approximation for the center
of mass (CM) trapped in the
metastable vertical state.
The block’s tipping point
occurs at xcrit and the energy
needed to tip/activate the
block is Q

2Refer to Resnick, Halliday, and Krane in Bibliography.
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υ ¼ 1
2π

ffiffiffiffiffi
ks
M

r
, ð15:3Þ

whereM is the mass of the block. Conservation of energy at the tipping point can be
used to find an effective value for the spring constant ks:

V xcritð Þ ¼ 1
2
ks xcritð Þ2 ¼ Q, ð15:4Þ

where Q is the activation energy.
In Chap. 2 we showed that for a block of mass M, width W, and height L, the

activation energy for tipping was given by:

Q ¼ Mg

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 �W2

p
� L

� �
, ð15:5Þ

where g is the acceleration of gravity. Using Eqs. (15.4) and (15.5), an equation is
obtained that gives an effective value for the spring constant ks for describing the
block oscillations:

ks ¼
Mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 �W2

p
� L

� �
xcritð Þ2 : ð15:6Þ

Thus, using Eqs. (15.3) and (15.6), the natural/resonant frequency for the block
becomes

υ ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 �W2

p
� L

� �
x2crit

:

vuut ð15:7Þ

If we now apply a relatively small periodic stress F(t) with a frequency f equal to
the block’s natural/resonant frequency υ, and assuming no energy loss, then with
time the block can be tipped/activated from the vertical to the horizontal position.
This is illustrated in Fig. 15.3 where we show amplitude growth with each force-
pulse.

One can see from Fig. 15.3 that large amplitudes/displacements can occur rather
quickly when the applied external force is periodic with a frequency f very close to
the block’s natural/resonant frequency υ. It should be noted, from Fig. 15.3, that the
amplitude can potentially grow if pulsed at any of these frequencies: υ, υ/2, υ/3, υ/4,
••• υ/N. However, the amplitude will grow at a much slower rate for each of the
successive decreases in frequency. Also, if there is damping/energy-loss present
(as discussed in detail in later sections), then this will greatly diminish the effective-
ness of the lower frequency resonant modes. Thus, in this book, a strong resonance
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condition will be said to occur when the pulsing frequency f matches the natural
frequency υ of the oscillator: f ¼ υ. Lower frequency weaker resonance conditions
will be said to occur when f ¼ υ/N, where N is an integer (N > 1).

As illustrated in Fig. 15.4, periodic pulsing at strong resonance causes the
amplitude/displacement to grow with each pulse. Eventually, the amplitude/dis-
placement of the center of mass reaches x ¼ xcrit and a tipping of the block occurs.
Thus, because of resonance, what seemed to be an impossible task (tipping of large
block with a small external force) tended to occur relatively easily.

Please note (see Fig. 15.4) that the periodic force is doing work on the oscillator.
Assuming no energy loss per cycle, then with each pulse the potential energy of the
oscillator is increasing. Therefore, from Chap. 2, we know that the Gibbs Potential
for the oscillator is increasing with each new pulse. This makes the oscillator more
unstable with each new pulse. One can think of the increase in Gibbs Potential for the
oscillator as equivalent to exciting the oscillator. An excited oscillator is fundamen-
tally more unstable and a driving force exists for Gibbs Potential reduction. This is

Amplitude

Force

Time

Time

Period Period = 1/Frequency = 1/ υ

Fig. 15.3 External periodic force is applied at a system’s natural/resonant frequency υ. Due to
resonance, and assuming little/no energy loss, relatively large amplitudes/displacements can occur

CM

V(x)

Small External
Periodic Force

Fext(t)

xcrit
x

Fig. 15.4 Amplitude/
displacement grows with
periodic pulsing at the
system’s natural frequency.
The periodic force produces
a rocking of the block back
and forth. Assuming little/
no energy loss per cycle, a
slightly higher oscillator
energy-level/amplitude is
reached with each new pulse
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especially true for excited atomic oscillators (lowering its Gibbs Potential can occur
via photon emissions) and excited nuclear oscillators (lowering its Gibbs Potential
can occur via photon and/or particle emissions).

Shown in Fig. 15.5 is a light pole that has failed at its baseplate (due to resonance
produced by pulsating wind conditions). The maximum wind speed was thought to
be rather benign relative to the strength of the baseplate/pole system. However, the
frequency f of the pulsating wind conditions tended to match the natural/resonant
oscillation frequency υ for the light pole. Because of resonance, the light pole failed
catastrophically at its baseplate.

2 Pulsing at Strong Resonance

Consider the rear wheels of a truck that are captured in a pothole that can be
approximated by a parabolic potential as shown in Fig. 15.6.

Fig. 15.5 Light pole failed
(at its baseplate) due to
pulsating wind conditions at
resonance

Fig. 15.6 Shown are the rear wheels of an truck that are trapped in a deep pothole that can be
approximated by a parabolic potential energy V(x). Since only the rear wheels of truck are trapped,
the amount of mass trapped in the pothole is M (where the total mass of the truck is 2 M). The
pothole has a depth h and width 2xcrit
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For the mass M to escape the parabolic pothole, the energy Vcrit for the oscillator
at xcrit must be at least equal to the potential energy of the trapped mass, giving:

Vcrit ¼ 1
2
ksx

2
crit ¼ Mgh: ð15:8Þ

Therefore, using Eq. (15.8), the effective spring constant ks for the trapped mass
M (in the parabolic-shaped pothole) can be expressed by:

ks ¼ 2Mgh

x2crit
: ð15:9Þ

The resonant frequency υ for this system can be expressed as,

υ ¼ 1
2π

ffiffiffiffiffi
ks
M

r
¼ 1

2π

ffiffiffiffiffiffiffiffi
2gh
x2crit

s
: ð15:10Þ

Periodic pulsing/pushing at the truck’s natural frequency υ, with an input energy
of V0 per pulse/push, the number n of pulses required to free the truck (assuming no
energy dissipation) can be determined from the conservation of energy:

nV0 � Vcrit ¼ 1
2
ksx

2
crit ¼ Mgh: ð15:11Þ

Example Problem 2
The rear wheels of a truck are trapped in a pothole that is 50 cm deep and
150 cm wide (as illustrated in Fig. 15.6). Assume that the trapped mass M in
the pothole can be approximated by a parabolic potential. With a single push,
we find that the rear wheels are displaced by 10 cm in the horizon direction. If
we now push periodically (with the same amount input energy each cycle) and
at the same frequency as the natural/resonant frequency for the system, how
many pushes are required to free the truck from the pothole. Assume that the
truck weighs 2000 lbs and that no energy is dissipated during pulsing.

Solution
Since only the rear wheels of truck are confined to the pothole, the confined
mass M is:

(continued)
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M ¼ 2000lb
2

� �
•

1kg
2:205lb

� �
¼ 453:5kg:

Using Eq. (15.9), the effective spring constant ks for the rear wheels that are
stuck in the parabolic potential is:

ks ¼ 2Mgh

x2crit
¼

2ð Þ 453:5kgð Þ 9:81
m

s2

� �
0:5mð Þ

0:75mð Þ2

¼ 7:91x103
kg

22
:

Since the single push produced a displacement in the x-direction of
x0¼ 10 cm, this corresponds to a pushing force of F¼ ksx0¼ 791 N¼ 178 lb.
Thus, we will assume that each push increases the potential energy of the
oscillator by an amount V0, where:

V0 ¼ 1
2
ks x0ð Þ2 ¼ 1

2

� �
7:91x103

kg

s2

� �
0:1mð Þ2

¼ 39:6
kg •m2

s2
:

Using conservation of energy (with no energy dissipation), the number n of
periodic pushes (with an input of energy of V0 per push) required to free the
rear wheels of the truck from the parabolic pothole is:

nV0 � Vcrit ¼ Mgh:

Solving for n we have:

n � Mgh

V0
¼ 453:5kgð Þ 9:81ms2

� �
0:5mð Þ

39:6
kg •m2

s2

¼ 56:

In summary, with a periodic pushing input energy of V0 per pulse, and
assuming no energy loss, it will require at least n ¼ 56 pushes to free the
2000 lb. truck from the parabolic pothole.
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3 Pulsing at Strong Resonance with Dissipation

Thus far, we have only considered resonance without regards to energy-dissipation/
damping. However, often there are dissipative forces (e.g., frictional forces) existing
that prevent the oscillator from absorbing all of the work-energy generated by the
periodic external force Fext.

Suppose we push on an oscillator of mass M, displace the mass M by amount x0,
and then release it. At the end of the first cycle, the mass returns back to a position x1
(where x1 ¼ x0). For this situation, there was no energy loss in the oscillator and we
say that no dissipative forces are acting. A system with no dissipative forces is an
artificial situation because dissipative forces always seem to exist.

In Fig. 15.7 we again show the rear wheels of a truck that are trapped in a pothole,
but this time loose sand is added to the pothole. When we push on the truck and
displace it horizontally by the amount x0 and release, the truck does not return to the
position x0 but to x1 (where x1 < x0). Some of the oscillator energy has dissipated.

The fractional energy reduction per cycle α for the oscillator is given by,

α ¼ 1=2ð Þksx21
1=2ð Þksx20

¼ x1
x0

� �2

: ð15:12Þ

It should be noted here that the energy loss per cycle (dissipation factor L ) is
given simply by L ¼ 1- α.

Using Eq. (15.12), we want to see how the amplitude of the oscillations will
degrade after a single-push (single input of energy) is initially given to the oscillator.
The amplitude degrades from the initial value of x0 as follows. Initially, the amplitude
is x0. After one cycle of oscillation, the amplitude degrades to x1 ¼ α(1/2)•x0. After
two cycles of oscillation, the amplitude degrades to x2 ¼ α(1/2)•x1 ¼ (α(1/2))2•x0.
If we generalize, then after the nth oscillation, the relative amplitude of the oscillation
is given by

Fig. 15.7 Shown are the rear wheels of a truck that are trapped in a pothole. The pothole potential
well has been approximated by a parabolic potential energy V(x). The pothole is filled with sand
which serves to generate resistive/frictional forces. Since only the rear wheels of truck are trapped,
the amount of mass trapped in the pothole is M where the total mass of the truck is 2 M
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xn
x0

¼ αð Þn=2 ¼ 1� Lð Þn=2: ð15:13Þ

For a single push (single energy-input), Fig. 15.8 illustrates how the amplitude of
the oscillations degrades as a function of the number of cycles and as a function of
the loss factor L.

Example Problem 3
With a single push, the mass of an oscillator is displaced by x0. After
5 oscillations, the displacement has degraded by 90%. What is the loss factor
L for this oscillator.

Solution
Since the amplitude of the oscillations has degraded by 90% after 5 oscilla-
tions, using Eq. (15.13) we obtain:

0:1x0
x0

¼ 1� Lð Þ5=2

) 0:1ð Þ2=5 ¼ 1� Lð Þ5=2
h i2=5

) L ¼ 1� 0:1ð Þ2=5 ¼ 0:602:

Therefore, after a single push, if the amplitude of the oscillations degrades
by 90% after 5 cycles, then the loss factor is L ¼ 0.602.

Now, rather than a single input of energy into the oscillator initially, let us assume
that at the start of each cycle a constant amount of energy V0 is input to the oscillator.
With dissipation, the oscillator energy at the end of the first cycle is V1 ¼ αV0. The
oscillator energy at the end of the second cycle is: V2 ¼ α[V0 + αV0] ¼ α

Fig. 15.8 Relative
amplitude degradation, with
number of cycles and
degradation factors L. A
single input energy of V0

was given to the oscillator
initially. For example, if the
oscillations die-off after
~15 cycles, then the loss
factor is L ¼ 0.5
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V0[1 + α]. The energy at the end of the third cycle is V3 ¼ α [V0 + V0(α + α2)] ¼ α
V0[1 + α + α2]. If we generalize, the energy Vn at the end of the n

th cycle is given by:

Vn ¼ V0α
Xn�1

m¼0

αm: ð15:14Þ

For dissipative forces (with α < 1), the above summation is simply a geometric
series and the summation for a geometric series is given by:

Xn�1

m¼0

αm ¼ 1� αn

1� α

	 

: ð15:15Þ

Thus, using Eqs. (15.14) and (15.15). the relative energy of the oscillator at the
end of the nth cycle is given by,

Vn

V0
¼ α

1� αn

1� α

	 

: ð15:16Þ

Shown in Fig. 15.9 is the relative energy of the dissipative oscillator at the end of
n oscillations, with a fixed input of energy V0 at the start of each cycle and with a
dissipation factor of L¼ 1-α. One can see that the relative oscillator energy increases
initially but then tends to saturate at longer cycles.

With a dissipation factor of L ¼ 0.5, the relative oscillator absorption (Vn/V0)
saturates at approximately 1; this means that even though the total energy input into
the oscillator is nV0, the oscillator can only absorb V0 of this energy. With a
dissipation factor of L ¼ 0.3, the relative oscillator energy absorption saturates at

Fig. 15.9 Relative
oscillator energy absorption,
with number of cycles and
with loss factors L. An input
energy of Vo is given to the
oscillator at the start of each
cycle. Note that all curves
tend to saturate when the
input energy rate matches
the energy loss rate
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approximately 2; this means that even though the total energy input into the oscillator
is nV0, the oscillator can only absorb 2V0 of this energy. With a dissipation factor of
L ¼ 0.2, the relative oscillator energy absorption saturates at approximately 4;
this means that even though the total energy input into the oscillator is nV0, the
oscillator can only absorb 4V0 of this energy. With a dissipation factor of L¼ 0.1, the
relative oscillator energy absorption saturates at approximately 8; thismeans that even
though the total energy input into the oscillator is nV0, the oscillator can only absorb
8V0 of this energy. Finally, with a dissipation factor of L¼ 0.01, the relative oscillator
absorption saturates at n� 10; this means that the total energy input into the oscillator
is nV0 and the oscillator eventually absorbs much of the input energy. But, only when
the loss factor is L ¼ 0 can the oscillator absorb all the input energy nV0.

Example Problem 4
Show that in the limit L ! 0 (no energy loss), Eq. (15.16) reduces to:
Vn ¼ nV0.

Solution
Since L ¼ 1-α, in the limit L ! 0 is equivalent to limit α ! 1. Working with
Eq. (15.16) we obtain:

Limitα!1 V0α
1� αn

1� α

	 
� �
¼ Limitα!1 V0

α� αnþ1

1� α

	 
� �

¼ Limitα!1 V0

d

dα
α� αnþ1
� �
d

dα
1� αð Þ

2
64

3
75

8><
>:

9>=
>;

¼ Limitα!1 V0
1� nþ 1ð Þαnð Þ

�1

	 
� �
¼ nV0:

Therefore, in the limit L ! 0 (no energy loss), Eq. (15.16) reduces to the
expected result Vn¼ nV0 and the oscillator absorbs all of the input energy. We
should note that L’Hospital’s Rule for limits has been used in this solution.

Let us now return to the truck in the pothole shown in Fig. 15.7. In order for the
truck to escape the pothole, the energy Vn (at the end of the n

th cycle of pulsing) must
be Vn � Vcrit. Therefore, we obtain

V0α
1� αn

1� α

	 

� Vcrit ¼ Mgh ¼ 1

2
ksx

2
crit: ð15:17Þ

Solving Eq. (15.17) for the number of pulses required to escape (n ¼ nescape) the
parabolic potential, we have
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nescape ¼
ln 1� 1� α

α

� �
Vcrit

V0

� �	 

ln αð Þ : ð15:18Þ

Remember that nescape [in Eq. (15.18)] represents the number of pulses required to
escape the parabolic potential well when pulsing at resonance ( f ¼ υ) with an input
energy per pulse of V0 but with a fractional energy reduction per pulse of α. It is
noted, from Eq. (15.18), that a solution exists for nescape only if,

1� α

α

� �
Vcrit

V0

� �
< 1: ð15:19Þ

Thus, when pulsing at resonance ( f¼ υ), with an input of energy V0 per cycle, the
necessary condition for escape is that the fractional energy reduction per cycle α
must satisfy the condition:

α >
Vcrit

V0 þ Vcrit
: ð15:20Þ

Or, equivalently, the loss factor L ¼ 1- α must satisfy:

L <
V0

V0 þ Vcrit
: ð15:21Þ

Example Problem 5
For the truck shown in Fig. 15.7, assume a dissipation factor of L¼ 1-α¼ 0.1.

(a) Find the constant input energy V0 needed per cycle to free the trapped rear
wheels of the truck after 10 cycles.

(b) Find the amount of the total input energy that is lost due to energy
dissipation.

Solution

(a) The rear wheels of the truck can be freed only when the oscillator energy at
the end of the nth oscillation is equivalent to or greater than Mgh. The
energy at the end of the nth oscillation is given by Eq. (15.16),

V0α
1� αn

1� α

	 

� Vcrit ¼ Mgh:

Solving for V0, we obtain:

(continued)
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V0 � 1� α

α 1� αnð Þ
	 


Mgh,

where: V0 is the fixed input energy per cycle,M is the amount of mass trapped
in the pothole, h is the depth of the pothole, and α is the fractional reduction in
energy per cycle. With a loss factor of L ¼ 0.1 for each cycle, then α ¼ 1-
L ¼ 0.9 and we obtain,

V0 � 1� 0:9

0:9 1� 0:910
� �

" #
Mgh ¼ 0:17Mgh:

(b) In order to free the truck in 10 pushing cycles (when pushing with a
constant input-energy of V0 per-cycle and with a loss factor of L¼ 0.1 per
cycle) V0 needs to be at least 17% of the energy Vcrit ¼ Mgh needed to
need to lift the truck vertically. However, during pulsing, total energy
input over the 10 cycles was 10•(17% of Vcrit) ¼ 170%Mgh. Therefore,
because of the loose sand in the pothole, about 70% of the total input
energy was dissipated/lost during pushing.

4 Pulsing at Weak Resonance with Dissipation

We would now like to consider a commonly occurring condition where pulsing is
done at a frequency f that is at a weak resonant condition ( f ¼ υ/N, where N is an
integer). Let us assume that at the start of each cycle, we input a constant amount of
energy V0 into the oscillator. The oscillator energy at the end of the first pulsing
cycle is V1 ¼ αNV0. The oscillator energy at the end of the second cycle is V2 ¼ αN

[V0 + αNV0] ¼ αNV0[1 + αN]. The energy at the end of the third cycle is U3 ¼ αN

[V0 + V0(αN + α2N)]¼ αN V0[1 + αN + (αN)2]. If we generalize, the energy at the end
of the nth pulsing cycle is

Vn ¼ V0α
N
Xn�1

m¼0

αN
� �m ¼ V0α

N 1� αNð Þn
1� αN

	 

: ð15:22Þ

To escape the parabolic potential, the energy Vn at the end of the n
th pulse must be

greater than or equal to Vcrit. Solving for the number of pulses n¼ nescape required to
escape the parabolic potential (when pulsing at a weak resonance condition f¼ υ/N),
we have
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nescape ¼
ln 1� 1� αN

αN

� �
Vcrit

V0

� �	 

ln αNð Þ : ð15:23Þ

For a solution to exist for nescape, then

1� αN

αN

� �
Vcrit

V0

� �
< 1: ð15:24Þ

Solving for α ¼ αescape, we obtain the necessary condition for escaping the
parabolic potential,

αescape >
Vcrit

V0 þ Vcrit

	 
1=N
: ð15:25Þ

Equation (15.25) can, of course, be used to determine the necessary condition on
the loss factor per cycle for escaping (Lescape ¼ 1-αescape):

L < 1� Vcrit

V0 þ Vcrit

	 
1=N
: ð15:26Þ

Example Problem 6
In Example Problem 4, the truck trapped in the parabolic pothole was freed
with ten pulses when pulsing was conducted at strong resonance ( f ¼ υ). The
loss factor was L¼ 0.1 and the input energy per pulse was V0¼ 17% of Vcrit. If
we had pulsed at a weaker resonance ( f ¼ υ/3), would it have been possible to
free the truck?

Solution
Since the loss factor is L ¼ 0.1, α ¼ 1-L ¼ 0.9. To be able to free the truck,
α ¼ αescape must be:

αescape >
Vcrit

V0 þ Vcrit

	 
1=N

>
Vcrit

0:17Vcrit þ Vcrit

	 
1=3
:

> 0:95:

Therefore, since it was stated in this problem that α¼ 0.9, but αescape� 0.95,
then it is impossible to free the truck with an input energy of Vo¼ 0.17Vcrit per
pulse at the weaker resonance condition ( f ¼ υ/3) and with a loss factor
per cycle of L ¼ 0.1.
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5 Onset of Yielding/Irreversible-Damage due to Pulsing

If resonance cannot be totally avoided, then it is very important to understand how
many resonant pulses can be tolerated before permanent damage is done to the
component/system. Again, let us consider a relatively simple system, the
cantilevered beam shown in Fig. 15.10.

As illustrated in Fig. 15.10, when a constant external force Fext is applied as
shown, the beam will be deflected from the horizontal position by an amount (Δx)0.
When the external force is removed, the beam returns back to its normal horizontal
position at Δx ¼ 0. Thus, the beam is showing elastic behavior that can be
approximated by a spring of constant ks given by:

ks ¼ Fext

Δxð Þ0
: ð15:27Þ

During previous reliability testing of such cantilevered beams, it was determined
that beam yielding occurs for a displacement (Δx)yield when an external force of
(Fext)yield is applied. By yielding, we mean that the beam becomes permanently
deformed/bent and cannot return back to its original position when the external force
is removed. Since the beam acts elastically up to the point of yielding, then the amount
of energy Vyield required to produce yielding/permanent-damage to the beam is:

Vyield � Fextð Þyield Δxð Þyield ¼
1
2
ks Δxð Þ2yield: ð15:28Þ

If the energy required to produce yielding (Vyield) is in the form of strong resonant
( f ¼ υ) pulsing, with each pulse having a constant energy input of Vo (and with no
energy dissipation), then the number of pulses n ¼ ndamage required to produce
permanent damage/deformation in the beam is given by,

Fig. 15.10 Cantilevered
beam acted on by an
external force. Beam
deflection Δx (from the
horizontal position) will
occur when an external force
Fext is applied. Permanent
bending/deformation of the
beam will occur when the
external force Fext is greater
than the yield force
(Fext)yield for the beam
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ndamage � Vyield

V0
: ð15:29Þ

Let us now consider a much more general and realistic situation. Suppose that the
energy required to produce yielding (Vyield) can be in the form of either strong
resonant pulsing ( f ¼ υ) or weak resonant pulsing ( f ¼ υ/N). Let us further suppose
that each pulse has a constant input energy of Vo but also with a dissipation factor of
L ¼ 1-α per pulse. Using Eq. (15.23), the number of pulses n ¼ ndamage required to
produce permanent damage/deformation of the beam can be written as,

ndamage ¼
ln 1� 1� αN

αN

� �
Vyield

V0

� �	 

ln αNð Þ : ð15:30Þ

In Eq. (15.30), as we have discussed, the resonant pulsing can be either strong
resonance (N ¼ 1) or weaker resonance (N > 1). The energy reduction fraction per
cycle α is related to the loss factor per cycle L by a simple relation L ¼ 1-α.

It can be seen from Eq. (15.30) that no solution exists for ndamage unless

1� αN

αN

� �
Vyield

V0

� �
< 1: ð15:31Þ

Equation (15.31) can be used to determine the necessary condition for the energy
reduction fraction α that leads to yielding/irreversible-damage:

αdamage >
Vyield

V0 þ Vyield

	 
1=N
: ð15:32Þ

Equation (15.32) can, of course, be used to determine the necessary condition for
the loss factor per cycle L to produce damage (Ldamage ¼ 1-αdamage):

Ldamage < 1� Vyield

V0 þ Vyield

	 
1=N
: ð15:33Þ

Example Problem 7
A diver weighing 200 lb. steps to the end of a diving board. The end of the
board is deflected from the horizontal position by 0.5 ft. Assume that diving
board deformation is elastic, but yielding (permanent board deformation/
bending) occurs when the end of the board is displaced by 4 ft.

(a) What is the effective spring constant for the diving board?

(continued)
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(b) What is the natural frequency for the diving board?
(c) Assuming that the diver starts bouncing (at the end of the diving board)

and at the diving board’s natural frequency, how many bounces (with a
input energy from the diver’s legs of 25 ft•lb per bounce) are required to
produce irreversible damage to the diving board?

(d) Reconsider question (c) except this time with a loss factor per cycle of
L ¼ 0.1.

Solution

(a) Using Eq. (15.26), we obtain the effective spring constant ks:

ks ¼ Force

Δxð Þ0
¼ 200lb

0:5ft
¼ 100

lb

ft
:

(b) Using Eq. (15.10), we obtain the natural frequency ν:

υ¼ 1
2π

ffiffiffiffiffi
ks
M

r
¼ 1

2π

ffiffiffiffiffiffiffi
ksg

Mg

s
¼ 1

2π

ffiffiffiffiffiffiffiffi
ksg

Fext

r

¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100

lb

ft
32:2

ft

s2

� �
200lb

vuuut ¼ 0:64cycles= sec

¼ 1bounce every1:56s:

(c) Using Eq. (15.28), we obtain the number ndamage of cycles that will
produce yielding/permanent-damage to diving board:

ndamageV0 ¼ Vyield ¼ 1
2
ks Δxð Þ2yield

) ndamage 25 ft • lbð Þ ¼ 1
2

100
lb

ft

� �
4 ftð Þ2

) ndamage ¼ 32:

(d) With a loss factor of L ¼ 0.1, α ¼ 1-L ¼ 0.9. The necessary condition for
damage to the diving board,

(continued)
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αdamage >
Vyield

V0 þ Vyield

	 
1=N
:

If pulsing is done at strong resonance (N¼ 1), then the necessary condition
for αdamage is,

αdamage >
800 ft • lb

25 ft • lbþ 800 ft • lb

	 
1=1
¼ 0:97:

Therefore, since α (determined from loss factor) is 0.9, but the requirement
for damage is αdamage > 0.97, then no damage to the diving board is expected
when the loss factor is L ¼ 0.1.

Problems

1. An 18-wheel truck (+ load) can weigh as much as 80,000 lb. As the truck crosses
a 100 ft long bridge, the center of mass (CM) of the bridge undergoes vertical
displacement of 0.2 ft. After the truck passes, the bridge eventually returns backs
to its normal horizontal position.

(a) Find the effective spring constant for this bridge.
(b) Find the effective natural/resonant frequency υ for the bridge.
(c) What is the period for the bridge oscillations?

Answers:

(a) 4.0 � 105 lb/ft
(b) 2.02 Cyc/s
(c) 0.5 s

2. For the bridge described in Problem 1, assume that the 18-wheelers are entering/
leaving the bridge at a rate of 45 Mi/h.

(a) What is the truck transit time across the bridge?
(b) Is strong resonance for the bridge possible due sequential truck passage?
(c) Is it possible that a weaker resonant mode for the bridge can be activated by

sequential truck passage?

Answers:

(a) Transit time ¼ 1.52 s
(b) Strong resonance condition is unlikely since the transit time for truck of 1.52 s

is greater than the minimum period for the bridge of 0.5 s.
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(c) Weaker resonance condition: Period for Bridge ¼ 3/ν ¼1.5 s. Since this is
approximately equal to the transit time, weak resonance is possible.

3. For the bridge described in Problems 1 and 2, it is known that the bridge will start
to yield for a vertical displacement of 1 ft. How many truck pulses (at the weaker
resonant condition of υ/3) is needed to cause yielding/irreversible-damage to the
bridge. (Assume no energy loss.)

(a) What is the energy input to the bridge per truck passage?
(b) What is the total energy that must go into the bridge to produce yielding

(permanent damage to the bridge)?
(c) How many trucks must pass sequentially before permanent damage is done to

the bridge.

Answers:

(a) 8000 ft-lb
(b) 200,000 ft-lb
(c) 25

4. Reconsider Problem 3, except this time find the dissipation factor for which
damage will not occur to the bridge.

Answer: L > 0.0057%

5. The center of mass (CM) of a tall flag pole is displaced (in the horizontal
direction) by a distance of 0.5 ft. when acted upon by a constant horizontal
wind of 20 mi/h. When released, the CM of the flag pole returns to its normal
position. Given that the force on the flag pole increases as the square of the wind
speed, and assuming elastic behavior, find the horizontal displacement for the CM
at a wind speed of 60 mi/h.

Answer: 4.5 ft

6. For the tall flag pole described in Problem 5, suppose that the flag pole starts to
show plastic behavior when the center of mass CM is displaced by 6 ft. At what
wind speed does plastic-behavior/permanent-damage start to occur for the
flag pole.

Answer: 69.3 mi/h.

7. A tall flag pole weighs 600 lb. A horizontal steady wind speed of 20 mi/h
displaces the center of mass of the pole by 0.5 ft. When the wind suddenly
stops, the CM oscillates at 3 cycles/s. Given that the force on the pole increases as
the square of the wind speed:
(a) find the effective external force acting on the CM to displace it 0.5 ft and
(b) what is the total input energy into the flag pole from the wind?

Answers:

(a) 3312 lb
(b) 1656 ft-lb
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8. Assuming that the flag pole (described in Problems 6 and 7) has no energy loss,
(a) how many 20 mi/h wind pulses (pulsing at flag pole resonance) are need to

cause permanent damage to the flag pole?
(b) Assuming an energy loss factor of L ¼ 0.1, is it possible that a pulsating

20 mi/h wind (pulsing at resonance for the flag pole) can produce damage?

Answers:

(a) Assuming no energy loss factor, it will take 12 pulses from the wind to
produce damage to the flag pole.

(b) For damage to occur, the loss factor Lmust be: L < 0.077. Since the stated loss
factor is L ¼ 0.1, damage is impossible.
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Chapter 16
Increasing the Reliability of Device/Product
Designs

Design engineers are continually asked reliability questions such as: (1) how long is
your newly designed device/product expected to last and (2) how can you make cost-
effective design changes to improve the reliability robustness of the device? Often
the designer will attempt to answer these questions by stating a safety factor v which
was used for a design:

ξdesign ¼ ξstrength=χ: ð16:1Þ

The safety factor, however, is only a qualitative indicator of the reliability margin
of the designed device. It states that the designer tried to stay below the expected
material’s strength distribution by some safety factor χ. For example, the designer
may have used a safety factor of χ ¼ 2. While this tends to give some degree of
reliability assurance, the fundamental reliability question still remains: how long is
the device/product expected to last, i.e., is the safety factor large enough or is it too
large? If the safety factor χ is too small, then a reliability problem may occur with
time (a very costly mistake). If the safety factor is too large, then the device/product
may be over-designed (a very costly mistake). The previous chapters of this book
emphasized that with accelerated testing data (this data may already exist in the
literature) and using the modeled acceleration factors (which have been presented in
this text for many of the potential failure mechanisms), one can answer the question:
how long is your newly designed device/ product expected to last?

As one can surely appreciate, the design engineer is always working in a tight
space where device reliability is one constraint and cost of the device is another, the
proverbial rock and a hard place for the designer. Because of higher materials costs
and/or higher device-performance demands, the designer is usually forced to design
more aggressively (less conservative with respect to reliability) and must be able to
answer the question: how long is the newly designed device/product expected to
last? If the time-to-failure answer is millions of years, then it is likely a costly over-
design issue. If the time-to-failure answer is only one year, it could be a costly
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reliability issue. In this chapter, design areas are emphasized where a relatively small
design improvement could have a large impact on device reliability.

1 Reliability Enhancement Factor

Many time-to-failure models have been presented in this text and these can be used
to define a very useful expression, the reliability enhancement factor (REF):

REF ¼ TFimproved�design

TFdesign
ð16:2Þ

The REF should be >1 for an improvement in reliability.1 If REF < 1, the
improved design actually has reduced reliability (perhaps the changes were made
for improved performance reasons, not for improved reliability reasons) and it tells
the designer how much reduction in reliability/lifetime can be expected.

Several examples are shown in this chapter for improving the reliability of
designs from both electrical and mechanical considerations. Since many device
designs (electromechanical devices) have both electrical and mechanical aspects to
the product reliability, inclusion of design examples from both electrical and
mechanical engineering into this single chapter may be of significant value for all
engineers. One will find that Eq. (16.2) is very helpful when one looks for design
areas where a small design change can have a large impact on device reliability. The
REF can be used to quickly estimate the impact on device reliability/lifetime when
changes are made to the design.

2 Electromigration Design Considerations

Electromigration (EM)-induced voiding in conductors (electron wind forcing the
metal ions to drift) generally occurs under high current densities J and at elevated
temperatures T. The design reliability enhancement factor REF for EM can be
written as

1A REF ¼ 2 means that the improved design should last 2 times longer than the original design, a
REF ¼ 3 means the improved design should last 3 times longer than the original design, etc.
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REF ¼ Jdesign � JCrit
J improved�design � JCrit

� �nEM

exp
QEM

KB

1
T improved�design

� 1
Tdesign

� �� �

¼
l
wt

� �
design � Jcrit

I
wt

� �
improved�design

� Jcrit
1

" #nEM
exp

QEM

KB

1
T improved-design

� 1
Tdesign

� �� �
,

ð16:3Þ

where nEM ¼ 2 and QEM ¼ 0.75 eV are often used for aluminum-alloys, nEM ¼ 1 and
QEM ¼ 1.0 eV are often used for copper, and I is the current in the conductor of width
w and thickness t. Jcrit is usually negligible except for very short leads (<100 μm).
Changes in these design parameters can have a significant impact on REF. The REF
value tells the designer how much longer the device/product will last if one uses the
improved design parameters. One can see that, for long leads with Al-alloy metalliza-
tion, reducing the design current density by 50 % can produce a REF¼ 4. This means
that the expected lifetime increases bya factor of 4 (or a 300% improvement in lifetime).

The improved design temperature Timproved design is usually achieved through
lowering the device operating temperature. This is normally achieved by designing
for lower device operating-power (reduced self-heating effects) and/or by improved
heat dissipation. The improved heat dissipation can be achieved through the design
use of more thermally conductive materials (e.g., Cu, SiC, Si, diamond, etc.), heat-
sinks, air foils to improve convection heat losses, fans to improve air flow for better
convection heat losses, or circulating fluids to improve heat losses (similar to
circulating coolants in combustion engines). Assuming an activation energy of Q
~ 1 eV, a rough rule of thumb is: for each 10 �C drop in device operating
temperature, the device will last ~2 times longer.

3 TDDB Design Considerations

Time-dependent dielectric breakdown (TDDB) occurs when a dielectric is operated
at elevated electric-fields E and at elevated temperatures T. If one uses a conservative
TDDB model, such as the E-Model, the REF for TDDB can be written as

REF¼exp γTDDB � Edesign�Eimproved�design
� �� 	

exp
QTDDB

KB

1
T improved�design

� 1
Tdesign

� �� �

¼exp γTDDB �
Vdesign�V improved�design

tox

� �� �
exp

QTDDB

KB

1
T improved�design

� 1
Tdesign

� �� �
ð16:4Þ

The value of γTDDB is temperature and dielectric-type dependent. For silica-based
dielectrics (which are critically important for ICs), γ is often approximated by:
γTDDB(T ) ¼ peff/(KBT ), where peff ¼ 13 eÅ. Thus, at 105 �C (378 K), γTDDB ¼
4.0 � 10�6 cm/V. The electric-field E (which is the voltage V drop in the dielectric
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divided by the dielectric thickness tox) generally plays a greater role in TDDB than
does temperature. One can see that for a 1 MV/cm reduction in electric-field E, at a
temperature of 105 �C, the dielectric lifetime due to TDDB will increase by at least
55 times. One can also see that even small changes in voltages are important when
the gate oxide thickness tox is very thin. More optimistic models such as the 1/E—
Model or V-Model (for hyper-thin gate dielectrics tox < 40 Å) have also been used.
While the activation energy for TDDB is usually complicated by the fact that it is
field dependent, an effective activation energy of QTDDB ¼ 0.3–0.6 eV is often used
for silica-based dielectrics.

4 Negative-Bias Temperature Instability Design
Considerations

Negative-bias temperature instability (NBTI) is a threshold voltage instability which
occurs in p-channel MOSFET devices in CMOS IC technologies. Under device
operation (presence of electric-field E in the gate oxide) and at elevated temperatures T,
the metastable Si–H bonds (at the gate oxide/silicon interface) can start to break with
the H-ions drifting away from this interface. This bondbreakage mechanism results
in an increase in threshold voltage for the p-channel device and results in a
corresponding reduction in p-channel drive-current. NBTI can result in failure for
some CMOS circuits. The REF for NBTI can be written as

REF¼exp γNBTI� Edesign�Eimproved�design
� �� 	

exp
QNBTI

KB

1
T improved�design

� 1
Tdesign

� �� �

¼exp γNBTI�
Vdesign�V improved�design

tox

� �� �
exp

QNBTI

KB

1
T improved�design

� 1
Tdesign

� �� �
ð16:5Þ

where tox is the gate oxide thickness. It is normally best practice to use your own
empirically determined values for γ and Q. However, if you do not have access to
such accelerated data, sometimes the following values are used: γNBTI ¼ 3.2 cm/MV
and QNBTI ¼ 0.6 eV. Remember, one can always use more conservative values
(lower values for γ and Q). Note that for a 40 Å gate dielectric, a reduction in gate
voltage of only 0.1 V will produce an REF ¼ 2.23 (a 2.23 � improvement in NBTI
lifetime).

5 HCI Design Considerations

Hot carrier injection (HCI) is generally an instability issue for n-channel devices in
CMOS IC technologies. Due to electrons being accelerated laterally from source to
drain in n-channel MOSFET devices, scattering will cause some of these hot
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electrons to be redirected vertically into the gate oxide, thereby causing damage
generally at the gate oxide/silicon interface. This interface damage tends to produce
an increase in threshold voltage with a corresponding reduction in the drive current
for n-channel devices. This type of device degradation may eventually result in
circuit failure. The REF for the HCI-induced failure mechanism can be written as

REF ¼exp αHCI � 1
V improved�design

� 1
Vdesign

� �� �
exp

QHCI

KB

1
T improved�design

� 1
Tdesign

� �� �

¼exp βHCI � 1�V improved�design

Vdesign

� �� �
exp

QHCI

KB

1
T improved�design

� 1
Tdesign

� �� �
ð16:6Þ

It is normally best practice to use empirically determined values for βHCI and
QHCI for your own devices. However, if you do not have access to such accelerated
data, sometimes the following values are useful: βHCL ¼ 30 and QHCI is very small
(sometimes positive, sometimes negative) but generally the activation energy is in
the range: �0.30 eV < QHCI < 0.30 eV). Remember, one can always use more
conservative values (lower values for βHCI and QHCI). The voltage V in Eq. (16.6) is
the voltage drop from source gate edge to drain gate edge because this is the voltage
drop that is accelerating the electrons. This may be a consideration for drain and/or
source extended devices. Note that a 10 % reduction in voltage may produce a REF
¼ 20 (a 20 � improvement in HCI lifetime).

6 Surface Inversion Design Considerations

MOSFET devices (especially threshold-dependent oxide-isolation devices) can suf-
fer from surface inversion if mobile ions, such as Li+, Na+, and K+ are accidentally
incorporated in the silica-based dielectrics. The ions may drift under normal device
operation. Accumulation of these drifted mobile ions at the silica/ silicon interface
can cause Si surface inversion resulting in an unwanted leakage increase for oxide-
isolation devices. The REF for surface inversion due to mobile ions can be written as

REF ¼ Edesign

Eimproved�design

� �
exp

QMobile�Ions

KB

1
T improved�design

� 1
Tdesign
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¼ V=toxð Þdesign
V=toxð Þimproved�design

 !" #
exp

QMobile�Ions

KB

1
T improved�design

� 1
Tdesign
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ð16:7Þ

For mobile ion-induced surface inversion, voltage is of relatively weak impor-
tance because it is a drift mechanism. Therefore, the burden of preventing mobile-ion
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reliability issues usually falls on manufacturing. The mobile-ion issues are usually
resolved by material purity improvements and/or the use of layers which getter the
mobile ions or serve as diffusion barriers. The activation energy for mobile
ion-induced failures is generally high, with QMobile-Ions ¼ 1.0 eV often used.

7 Creep Design Considerations

Creep-induced failures can be very important in mechanical components. The REF
for creep can be written as

REF ¼ σdesign � σyield
σimproved�design � σyield

� �ncreep

exp
Qcreep

KB

1
T improved�design

� 1
Tdesign

� �� �
,

ð16:8Þ

where σ is the mechanical stress in the material.2 Note that if the improved design
stress σimproved design can be brought very close to the yield strength, then the REF
goes to infinity. This means that, in theory, an infinite improvement in lifetime can
be achieved and the device should never fail! However, as we have cautioned several
times in this text, if even small cracks exist in the material, stress risers can develop
at crack tips. These stress risers can serve to increase the local stress levels at crack
tips (originally below the yield point without crack) to levels that easily exceed the
yield point and degradation may occur. Thus, one should always question: does a
yield stress really exist in the materials being used?

If the designer does not have creep data for the component materials being used in
the design, then the following values can sometimes be useful: for soft metals (such
as solder), ncreep ¼ 3 is often used; for strong metals, such as mild steels, ncreep ¼ 5 is
often used;3 and, for very strong metals, ncreep ¼ 7 is sometimes used.

Since creep is usually a more severe problem at temperatures > 0.5 Tmelt, then the
creep activation energy Qcreep is usually close to the lattice-diffusion/bulk activation
energy Qlattice-diffusion (1–4 eV).

The REF, Eq. (16.8), can be very helpful because the designer only needs to know
the equations for the maximum stress in the material for a given loading. Fortunately,
these equations may already exist and are often found in Strength of Materials, Solid
Mechanics, Fracture Mechanics, and Materials Science textbooks. Several exam-
ples of creep will follow.

2Recall that the stress-level σdesign must be greater than the yield-strength σyield for creep to occur.
3The value of ncreep ¼ 5 is used so often in creep analysis that it is generally referred to as the
literature as the five-power-law for creep behavior.
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7.1 Creep in Rotors

Creep can be very important for mechanical components (rotors) that have to rotate
with high angular speed ω. The REF equation for a simple rotor (rotating mass
attached to a light connecting rod) becomes:

REF ¼

Mrω2

A

� �
design

� σyield
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improved�design

� σyield

0
BBB@

1
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KB

1
T improved�design

� 1
Tdesign
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:

ð16:9Þ

Creep exponent data can usually be found in the literature for a given material. If
such empirical data is unavailable to you, for strong metal-alloys, the kinetic values
are sometimes used: ncreep¼ 4 (likely a conservative value) andQcreep¼ 1 eV (likely
a conservative value). One can see that for mechanical designs where creep in rotors
can be an issue, the designer can dramatically improve reliability robustness by:
reducing the angular velocity ω of the rotor, reducing the effective radius r of the
rotor, reducing the mass M at the end of the rotor, and by increasing the cross-
sectional area A of the connecting rod. Assuming that the yield stress is negligibly
small and a creep exponent of ncreep ¼ 4, the REF goes as the 8th power of angular
speed x and as the 4th power for the connecting arm length r, mass M of rotor, and
cross-sectional area A of the connecting rod. Note that a 20 % reduction in angular
speed can produce a REF ¼ 6, or a 500 % increase in lifetime.

7.2 Creep in Pressurized Vessels

Creep can be a very important degradation mechanism for thin-walled vessels that
are continually pressurized and then evacuated. The REF for creep can be written for
a spherical thin-walled vessel as

REF ¼

Pr

2t
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� σyield
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� 1
Tdesign
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ð16:10Þ

P is the pressure difference of the gas inside versus outside of the vessel, r is the
radius of the spherical vessel, t is the thickness of the vessel wall, and it is assumed
that t � r. Assuming that the yield stress is negligibly small and has a creep
exponent of ncreep ¼ 4 (likely a conservative value), then the REF goes as the 4th
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power of the gas pressure P, vessel radius r, and vessel thickness t. Note that a 20 %
increase in the thickness of the vessel can increase the REF to 2, or a 100 % increase
in the expected lifetime. Also, as a caution, this analysis assumes that the gas in the
vessel does not chemically react with or diffuse into the vessel material, thus
possibly changing the material properties during the lifetime of the product. Finally,
creep is strongly temperature dependent. A conservative value for the activation
energy is Qcreep ¼ 1.0 eV.

7.3 Creep in a Leaf Spring

Creep can be a very important degradation mechanism in leaf springs when the
beam is loaded. A simple leaf spring (illustrated in Fig. 16.1) is a rectangular beam of
length L, width b and thickness t. The leaf spring is supported at both ends and must
carry a weight W.

One can write the REF for creep in a leaf spring as

REF ¼

3WL
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� 1
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:

ð16:11Þ

Assuming that the yield stress is negligible and the beam is made of a material
that is hard/strong with a creep exponent of ncreep ¼ 4 (likely conservative), then the
REF for this simple leaf spring goes as at least the 8th power of the thickness of the
beam while the other beam design dimensions go as the 4th power. Therefore, if the
designer goes with an improved design and increases the beam thickness by 20 %,
then REF ¼ 4.3, or a 330 % increase in lifetime. Also, creep is thermally activated
with Qcreep ¼ 1.0 eV (likely conservative value).

L

W

t

b

Fig. 16.1 Leaf spring
(bending beam) is shown
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7.4 Stress Relaxation in Clamps/Fasteners

Stress relaxation can induce failures for critically important clamping applications.
The REF equation, for the stress relaxation (due to creep with an exponent of n) in a
clamp/fastener, can be written as

REF ¼ σmaxð Þdesign � σyield

σmaxð Þimproved�design � σyield

 !ncreep�1

exp
Qcreep

KB

1
T improved�design

� 1
Tdesign
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:

ð16:12Þ

Assuming that a minimum clamping force Fmust be maintained for adequate bolt
and nut type clamping and that all stress relief occurs in the shaft of the bolt, then the
REF for stress relaxation that is occurring in the shaft of the bolt of radius r is given
by

REF ¼
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ð16:13Þ

Assuming negligible yield strength and that the shaft of the bolt is made of
material that is reasonably hard/strong with a creep exponent of ncreep ¼ 4 (likely
conservative), then one can see that the REF for stress relief goes as the 6th power of
the radius of the shaft of the bolt. Note that a 20 % increase in the bolt-shaft radius
can result in an REF ¼ 3, or a 200 % increase in lifetime. Also, creep is strongly
temperature dependent with Qcreep ¼ 1.0 eV (likely a conservative value).

8 Fatigue Design Considerations

Fatigue can be a very important reliability issue for devices which undergo a cyclical
stress. This can be an important failure mechanism for storage vessels that are
continually pressurized and then evacuated; it can be an important failure mecha-
nism for ICs that undergo continual power-up and power-down cycles; it can be an
important failure mechanism for turbine blades that experience continual starting
and stopping; it can be an important failure mechanism for light poles that must
respond to continual changes in the wind speed and direction; etc. The REF equation
due to cyclical stress can be written as
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REF ¼ Δσð Þdesign � Δσð Þelastic
Δσð Þimproved�design � Δσð Þelastic

" #nfatigue
, ð16:14Þ

where Δσ is the total stress range and (Δσ)elastic is the part of the total stress range
that is considered to be in the elastic region (where no degradation is expected). Note
that the stress range (Δσ)elastic is analogous to the yield stress.

8.1 Fatigue in Storage Vessels

Fatigue can be an important failure mechanism for a vessel that is continually
pressured with a gas and then evacuated. The REF equation due to fatigue can be
written as

REF ¼ Δσð Þdesign � Δσð Þelastic
Δσð Þimproved�design � Δσð Þelastic

� �nfatigue

¼
Δσ

1� σmean=σTSð Þ
� �

design

� Δσð Þeleastic
Δσ

1� σmean=σTSð Þ
� �

improved�design

� Δσð Þelastic

2
6664

3
7775
nfatigue

ð16:15Þ

For a spherical vessel, of radius r and metal thickness t, that is continually
pressured to Pmax then evacuated to Pmin, the stress range is given by:

Δσ ¼ Pmax � Pminð Þr
2t

and σmean ¼ Pmax � Pminð Þr
4t

ð16:16Þ

σTS is the tensile stress of the material used to make the spherical vessel.
Assuming that the yield stress is negligible (because of cracks or other issues) and
that the vessel is made of hard/strong metals, then nfatigue ¼ 4 (likely conservative)
can be used. From a design standpoint, one can see that fatigue can be minimized by
keeping the pressure difference (Pmax - Pmin) as small as possible, keeping the radius
r of the spherical vessel as small as possible, and selecting materials with high tensile
strength σTS.

8.2 Fatigue in Integrated Circuits (ICs)

Each time that an IC is powered up and then down, the device undergoes cyclical
stress due to the thermal expansion mismatch in the materials used for IC fabrication.
Since these are thermomechanical stresses, the REF equation for thermal cycling is
often written as
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REF ¼
αij ΔTð Þ � ΔTð Þelastic
� 	

design

α
0
ij ΔTð Þ � ΔTð Þelastic
� 	

improved�design

" #nfatigue
, ð16:17Þ

where ΔT is the full thermal-cycling range and aij represents the thermal expan-
sion mismatches for the materials of interest. (ΔT)elastic represents the part of the total
temperature range that is expected to be in the elastic range. Anything that can be
done to minimize the thermal expansion mismatch of the materials and/or the
temperature cycling range will improve REF. An exponent of nfatigue ¼ 4 is often
used for fatigue in ICs. If solder is the material failing, then perhaps nfatigue ¼ 2 is
more appropriate.

Problems

1. An IC designer worried about electromigration decides to increase the metal
width of an aluminum-alloy conductor by 20 %. Assuming Jcrit is negligibly
small, how much of an increase in lifetime can the designer expect?

Answer: REF ¼ 1.44 (or a 44 % increase in lifetime)

2. If the conductor in Problem 1 is copper, how much lifetime improvement can be
expected with an increase in conductor width by 20 %?

Answer: REF ¼ 1.2 (or a 20 % increase in lifetime)

3. If the temperature of the Al-alloy conductor in Problem 1 could be reduced from
105 to 95 �C by using a heat sink, how much longer would the conductor be
expected to last?

Answer: REF ¼ 1.87 (or a 87 % increase in lifetime)

4. If the temperature of the copper conductor in Problem 2 could be reduced from
105 to 95 �C by using a heat sink, how much longer would the conductor be
expected to last?

Answer: REF ¼ 2.30 (or a 130 % increase in lifetime)

5. A 45 Å gate oxide MOSFET operates in inversion with a gate voltage of 2.7
V. How much would the TDDB lifetime increase if gate voltage is reduced to 2.5
V?

Answer: REF ¼ 5.92 (or a 492 % increase in lifetime)

6. If the transistor described in Problem 5 is a p-channel MOSFET, how much
would the NBTI lifetime increase if the gate voltage is reduced from 2.7 to 2.5 V?

Answer: REF ¼ 4.15 (or a 315 % increase in lifetime)
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7. If the transistor described in Problem 5 is a n-channel MOSFET, how much
would the HCI lifetime increase if the device operating voltage is reduced from
2.7 to 2.5 V?

Answer: REF ¼ 9.23 (or a 823 % increase in lifetime)

8. Assuming that a rotor’s arm is made of a strong metal and that the operational
stress in the rotor’s arm is much greater than the materials yield point, what is
the expected increase in creep lifetime if the length of the rotor’s arm r is
reduced by 20 %?

Answer: REF ¼ 2.44 (or 144 % increase in lifetime)

9. Assuming that a thin-walled spherical storage vessel is made of a strong metal
and that the operational stress is much greater than the materials yield point,
what is the expected increase in creep lifetime if the thickness of the wall is
increased by 30 %?

Answer: REF ¼ 2.86 (or 186 % increase in lifetime)

10. Assuming that a leaf spring is made of a strong metal and that the operational
stress is much greater than the materials yield point, what is the expected
increase in creep lifetime if the thickness of the spring is increased by 30 %?

Answer: REF ¼ 8.16 (or 716 % increase in lifetime)

11. Assuming that a nut and bolt type clamp is made of a strong metal and that the
operational stress in the shaft of the bolt is much greater than the materials yield
point, what is the expected increase in stress-relaxation lifetime if the radius of
shaft is increased by 30 %?

Answer: REF ¼ 4.83 (or 383 % increase in lifetime)

12. Assuming that a thin-walled spherical storage vessel is made of a strong metal
and that the operational stress is much greater than the materials yield point,
what is the expected increase in fatigue lifetime if the allowed pressure range is
decreased by 20 %?

Answer: REF ¼ 2.44 (or 144 % increase in lifetime)

13. Assuming that the elastic range is negligibly small and that a fatigue exponent of
n ¼ 4 can be used for a plastic molded integrated circuit, what is the expected
increase in IC thermal-cycling lifetime if the operational thermal range is
decreased by 20 %?

Answer: REF ¼ 2.44 (or 144 % increase in lifetime)
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Chapter 17
Screening

It would be a great accomplishment if we could simply design and build devices
without defects. That should always be our goal—but, obtaining perfection is indeed
a difficult/impossible challenge. Given that all devices will likely have a small
fraction of the population which is defective, the question that we want to address
in this chapter is: can a relatively short-duration stress be used to eliminate the
defective/weak devices without causing significant degradation to the good/ strong
devices? The use of a short-duration stress to eliminate weak devices is generally
referred to as screening. We will find that screening can sometimes be very effective,
but not always. Screening effectiveness depends on the exact details of the strength
distribution for the devices plus the magnitude and duration of the screening stress.

1 Breakdown/Strength Distribution for Materials
and Devices

In Chap. 10 we discussed ramp-to-failure/ramp-to-breakdown/ramp-to-rupture test-
ing. In that chapter, a sample of the population of such devices/materials was
randomly selected and the stress level ξ was ramped (often in a linear fashion)
until device/material failure was recorded. This ramp-to-breakdown sampling
approach typically produces a breakdown distribution for ξBD similar to that illus-
trated in Fig. 17.1. A region A of very low breakdown strengths can exist where these
devices/materials will fail almost immediately after the normal operational stress ξop
is applied. A region B of defective devices/materials can also exist where these
devices/materials are strong enough to survive ξop for a short period of time, but
where they are too weak to survive for an extended period of time (a reliability
problem). Region B can be impacted by using a short screening stress ξScreen to
eliminate these weak devices/materials. However, while the application of ξScreen
tends to eliminate the devices/materials to the left of the screen, screening also
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weakens some of the devices/materials to the right of the screen. If more devices/
materials are eliminated to the left of the screen ξScreen (in region B) than those that
are severely weakened to the right of the screen (in region C) then the screen can
have an overall positive impact on the reliability of the post-screened devices/
materials. However, if the screen severely weakens more devices/materials to the
right of the screen (in region C) than it eliminates to the left of the screen (in region B),
then the screen can have an overall adverse impact on the reliability of the post-
screened devices/materials.

2 Impact of Screening Stress on Breakdown Strength

The impact of a screening stress ξScreen (and screening time tScreen) on the devices/
materials to the left of the screening value is very simple. If tScreen > t0 (the time-to-
fail at breakdown), then all the devices/materials to the left of the screen will fail
during the screen. However, the impact of screening on devices to the right of the
screen is also an important reliability concern. In fact, this is the crucial reliability
concern/question for screening and the answer will determine whether the overall
reliability impact of the screen will have a positive or a negative impact on the post-
screened devices.

Breakdown Strength: xBD
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Fig. 17.1 Arbitrary device/material breakdown distribution is illustrated. Region A is often referred
to as a yield (or manufacturing) issue because these devices/materials will fail almost immediately
after the normal operational stress ξop is applied. Region B devices will fail relatively shortly after
the screening stress ξScreen is applied. Region C devices/materials can be severely weakened by the
screen and some of these devices/materials may actually fail during the screen. The extent of Region
C depends on the magnitude and the length of time that the screening stress ξScreen is used and how
far removed the screening stress ξScreen is from the strength ξBD
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2.1 Screening Using Exponential TF Model

From the exponential time-to-failure (TF) model presented in Chap. 11 one obtains:

TFξop ¼ t0exp γ ξBD � ξop
� �� �

, ð17:1Þ

where: t0 ¼ 1/(γR), R ¼ dξ/dt, and γ is the exponential stress parameter. Recall
that t0 is the time-to-failure when a stress level of ξ ¼ ξBD is applied to the device/
material. R is the ramp-rate (often linear) that is associated with increasing the stress
during the ramp.

After the screening stress ξScreen is applied for a time tScreen, the screen will reduce
time-to-failure for a device to the right of the screen (illustrated in Fig. 17.1) and this
reduction in TF is given by:

TFξop,Post Screen ¼ t0exp γ ξBD � ξop
� �� �� tScreenexp γ ξScreen � ξop

� �� � ð17:2Þ

The reduction in TF can be expressed alternatively as a reduction in the original/
pre-screen breakdown strength ξBD:

TFξop,Post Screen ¼ t0exp γ ξBD � ΔξBDð Þ � ξop
� �� �

¼ exp �γΔξBD½ � � TFξop,
ð17:3Þ

where:

ΔξBD ¼ ξBD,Pre Screen � ξBD,Post Screen: ð17:4Þ

Equating Eqs. (17.2) and (17.3), one obtains:

ΔξBD ¼ 1
γ
ln

1

1� tScreen
t0

� 	
exp �γ ξBD � ξScreenð Þ½ �

8>><
>>:

9>>=
>>;, ð17:5Þ

where: ξBD ¼ ξBD,Pre Screen and t0 ¼ 1/(γR). Equation (17.5) describes the
expected screening-induced degradation in breakdown strength ΔξBD (for devices
to the right of the screening value in Fig. 17.1) when using an exponential TF model.
Remember—for tScreen > t0, all of the devices to the left of the screening value ξScreen
are expected to fail during the screen.

The use of Eq. (17.5) is illustrated in Fig. 17.2. For the devices to the right of the
screening value ξScreen, assuming that tScreen > t0, a region (1) develops in which the
devices are expected to fail during tScreen. Adjacent to this is a region (2) in which the
devices/materials do not fail during the screen but these devices/ materials are
severely degraded by the screen. Past this severely degraded region is a region
(3) of devices/materials where the degradation impact of the screen is rather small
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and reduces sharply with screening stress when ξScreen is much less than the
pre-screen breakdown value ξBD.

Example Problem 1
A sample of capacitors (with SiO2 dielectric) was randomly selected from a
population of such capacitors. The electric field for each capacitor in the
sample was ramped to failure at the expected operating temperature of
105 �C with a linear ramp rate of R ¼ 1 MV/cm/s. A median breakdown
strength of EBD ¼ 10.0 MV/cm was recorded. Assuming an exponential field
acceleration parameter of γ ¼ 4.0 cm/MV, the time-to-failure at E ¼ EBD was
calculated to be t0 ¼ 1/(γR) ¼ 0.25 s. In order to weed out some of the low
breakdowns in the population, a screening stress of EScreen ¼ 6.0 MV/cm was
applied for 3 s. How much screening-induced degradation will occur for the
median breakdown strength?

Solution
Using Eq. (17.5), one obtains for the exponential TF model:

(continued)
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Fig. 17.2 Screening-induced degradation ΔξBD for devices/materials to the right of the screening
stress ξScreen (region C in Fig. 17.1). The screening-induced degradation can be large for a long
screening time tScreen and/or when screening stress ξScreen is close to the device/material breakdown
strength ξBD. Region (1) depicts devices that are expected to fail during the screen. Region (2)
represents devices/materials that do not fail during the screen but that are severely degraded by the
screen. Region (3) depicts devices where the screening-induced degradation is very small
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ΔEBD ¼ 1
γ
ln

1

1� tScreen
t0

� 	
exp �γ EBD � EScreenð Þ½ �

8>><
>>:

9>>=
>>;

¼ 1
4:0cm=MV

ln
1

1� 3S
0:25S

� 	
exp � 4:0cm=MVð Þ 10� 6ð ÞMV=cm½ �

8>><
>>:

9>>=
>>;

¼ 3:38� 10�7MV=cm
ffi 0MV=cm:

Therefore, when using an exponential TF model for dielectric breakdown,
one finds that a short 3 s capacitor stress at 6.0 MV/cm has virtually no impact
on the median breakdown strength of 10.0 MV/cm (a reduction in breakdown
strength of only [ΔEBD/(10 MV/cm)]*100 % ¼ 0.00000338 %).

2.2 Screening Using Power-Law TF Model

From the power-law time-to-failure (TF) model presented in Chap. 11, one obtains1:

TFξop ¼ t∗0
ξBD
ξop

� 	n

, ð17:6Þ

where, t∗0 ¼ ξBD= nþ 1ð ÞR½ �and R ¼ dξ=dt:t∗0 is the power-law model time-to-
failure when a stress level of ξ¼ ξBD is applied to the device/material; R is the ramp-
rate (often linear) that is associated with increasing the stress with time during the
ramp; and n is the power-law exponent. One should note that (for a constant ramp
rate R) t0 is approximately constant for the exponential TF model but t∗0 depends on
ξBD when using the power-law model.

After the screening stress ξScreen is applied for a time tScreen, the screen will reduce
the time-to-failure for a device to the right of the screening value ξScreen (illustrated in
Fig. 17.1) and is given by:

1A yield strength ξYield (see Chap. 13) has not been included in this power-law model. Since we are
screening for defects, the assumption is made here that the defective units are unlikely to have a
yield point.
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TFξop,Post Screen ¼ t∗0
ξBD
ξop


 �n
� tScreen

ξScreen
ξop


 �n

¼ ξBD
nþ 1ð ÞR

ξBD
ξop

� 	n

� tScreen
ξScreen
ξop

� 	n

:
ð17:7Þ

The reduction in TF can be expressed alternatively as a reduction in the original
pre-screen breakdown strength ξBD:

TFξop,Post Screen ¼ ξBD � ΔξBD
nþ 1ð ÞR

ξBD � ΔξBD
ξop

� 	n

, ð17:8Þ

where:

ΔξBD ¼ ξBD,Pre Screen � ξBD,Post Screen: ð17:9Þ

Equating Eqs. (17.7) and (17.8), one obtains:

ΔξBD ¼ ξBD 1� 1� tScreen
t∗0

ξScreen
ξBD

� 	n� 
1= nþ1ð Þ( )
, ð17:10Þ

where: ξBD¼ ξBD,Pre Screen and t
∗
0 ¼ ξBD[(n + 1)R]. Equation (17.10) describes the

expected screening-induced degradation ΔξBD, for devices to the right of the screen-
ing value in Fig. 17.1, when using a power-law TF model. Remember—for tscreen >
t∗0 , all the devices to the left of the screening value ξscreen are expected to fail during
the screen.

In Fig. 17.3 we illustrate the impact of applying a screening stress ξScreen for a
time tscreen > 2t∗0 , using a power-law TF model with exponent n.

When screening devices/materials with the power-law TF model and with a low
value exponent n (~2), a short duration screening stress ξScreen can serve to weed out
the very weak devices. But, the screening stress ξScreen can also produce significant
degradation ΔξBD to the good/strong devices/materials that were initially well above
the screening value ξScreen. However, for high values of n (>10) the degradation
ΔξBD for the good/strong devices is relatively small except when ξscreen is very close
to the initial ξBD. Therefore, one would expect that screening might be more safely/
effectively implemented for hard metals (with n� 5) versus very soft metals such as
solder (n ~ 2). We should note that for time dependent dielectric breakdown
(Chap. 12), a power-law model is sometimes used for very thin dielectrics (<5nm)
and with a very high power-law exponent n (~40–48). Thus, screening dielectrics
using a power-law TF model can potentially be very effective.
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Example Problem 2
Reconsider Example Problem 1, except this time use a power-law TF model
with n ¼ 44.

Solution:
For the power-law model, the time-to-fail at breakdown is given by:

t∗0 ¼ EBD= nþ 1ð ÞR½ � ¼ 10MV=cmð Þ= 45ð Þ 1MV=cm=sð Þ½ � ¼ 0:22s:

Using Eq. (17.10), one obtains:

ΔEBD ¼ EBD 1� 1� tScreen
t0∗

EScreen

EBD

� 	n� 
1= nþ1ð Þ( )

¼ 10MV=cmð Þ 1� 1� 3 s
0:22s

6:0MV=cm
10:0MV=cm

� 	44
" #1= 45ð Þ8<

:
9=
;

¼ 10MV=cmð Þ 5:25� 10�11
� �

¼ 5:25� 10�10MV=cm
ffi 0 MV=cm:

Therefore, when using a power-law TF model for dielectric breakdown, we
see that a short 3 s capacitor stress at 6.0 MV/cm serves to produce virtually no

(continued)
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Fig. 17.3 Screening-induced degradation ΔξBD for good/strong devices when a screening stress
ξStress is applied for a time of tScreen ¼ 2t∗0 . For power-law TF model, the screening-induced
degradation for the good/strong devices is more significant when the power law exponent is low.
For high values of n (>10), the degradation for the good/strong devices is significant only when the
screening stress is very close to the initial (pre-screen) breakdown strength of these devices/
materials
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degradation to the pre-screen median breakdown strength of 10.0 MV/cm
(a reduction in breakdown strength of only [ΔEBD/(10 MV/ cm)]*100 % ¼
0.00000000525 %).

3 Screening Effectiveness

For a screen to be effective (an overall positive impact on post-screen device/
materials reliability), one must look closely at the details of the breakdown distri-
bution plus the magnitude and duration of the screening stress. We will consider
cases where the screen is effective (increases the reliability of the post-screen
devices) as well as cases where the screen is not effective.

In Fig. 17.4 we show a normal-distribution plotting2 of the ramp-to-breakdown
values for 28 randomly selected capacitors with a SiO2 dielectric thickness of 200 Å.
The breakdown values were obtained by ramping the electric field to breakdown
using a ramp rate of R ¼ 1 MV/cm/s. One can see that region A consists of
4 capacitors (~14 % of capacitors) that have a breakdown less than 5 V. Region
B has three weak capacitors (~11 % of capacitors) with breakdowns between 5 and
12 V. Region C represents the separation between the weak devices in region B and
the strong part (majority) of the distribution.
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Fig. 17.4 Voltage breakdown distribution for 28 silica-based capacitors with dielectric thickness
200 Å. Normal operation for these capacitors is at 5 V. Region A represents very weak capacitors
that will result in a yield loss at 5 V. Region B represents weak capacitors that will become a longer
term reliability issue during 5 V operation. Region C represents a region which is free of weak
devices

2Recall from Chap. 6––to convert the standard deviation Z-value to cumulative fraction F of
devices, use the Excel Function: F ¼ NORMSDIST(Z).
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3.1 Screening Effectiveness Using Exponential TF Model

We want to investigate the potential reliability impact of applying a voltage screen
VScreen for a time tScreen to the devices/capacitors shown in Fig. 17.4. Recall that this
distribution was obtained by ramping the electric field with a linear ramp rate of R¼
1 MV/cm/s at the expected operational temperature of 105 �C. At 105 �C, the field
acceleration parameter is given by γ ¼ 4.0 cm/MV. This gives a time-to-failure at
breakdown of t0 ¼ 1/[ γ R] ¼ 0.25 s.

Table 17.1 shows the impact of screening on the breakdown distribution (VBD –

ΔVBD) when a screening stress VScreen is applied for a time of tScreen¼ 2.5 s.ΔVBD in
this table is determined using Eq. (17.5) for the exponential model. In Table 17.1 we
can see the pre-screen breakdown distribution, as well as the expected post-screen
breakdown distributions after 7, 8 or 9 V screening. The dashed table entries (—)
mean that the degradation was severe enough to cause these devices to fail during the
screen.

As for screening effectiveness, the 7 V screen in Table 17.1 was ineffective
because it only eliminates the very low breakdowns in region A (see Fig. 17.4).
However, these devices would have normally been eliminated anyway with a simple
5 V operational test. Also, the 7 V screen tended to weaken the region B devices thus
making them even more likely to become a post-screen reliability problem during
normal 5 V operation. The 8 V screen in Table 17.1 was only partially effective—it
did eliminate one of the three weak devices in region B but the remaining two
devices in region B were significantly weakened by the 8 V screen, thus making
them even more likely to become a post-screen reliability problem during normal
5 V operation. The 9 V screen in Table 17.1 worked extremely well— all three weak
devices in region B were eliminated without having a significant adverse impact on
the breakdown of post-screened good/strong devices.

3.2 Screening Effectiveness Using Power-Law TF Model

We now want to investigate the reliability impact of applying a voltage screen
VScreen, to the devices/capacitors shown in Fig. 17.4, except this time we want to
use a power-law model (with n ¼ 44, from Chap. 12). Recall that for the power-law
TF model, the time-to-failure at breakdown is given by t0

∗ ¼ EBD/[(n + 1)R]. The
degradation caused by the screen on the breakdown strength ΔVBD is given by
Eq. (17.10) for the power-law model.

Table 17.2 shows the impact of screening on the breakdown distribution (VBD –

ΔVBD) when a screening stress VScreen is applied for a time tScreen ¼ 2.5 s. In
Table 17.2 one can see the pre-screen breakdown distribution as well as the predicted
post-screen breakdown distributions after 7, 8, 9, or 10 V screening. The dashed
table entries (—) means that the degradation was severe enough to eliminate these
weak devices during the screen. The 7 V screen was ineffective because it only
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eliminated the very low breakdowns in region A (refer to Fig. 17.4). The 7 V screen
in Table 17.2 had virtually no impact on region B devices. As one can see, the 8 V
screen also had little impact on the region B devices. The 9 V screen in Table 17.2
was only partially effective—it did eliminate two of the three weak devices in region
B, but the 9 V screen also served to weaken the remaining post-screen device in

Table 17.1 Impact of voltage screening on capacitor breakdown distribution (using exponential
TF model)

tox ¼ 2.00E-06 cm
γ ¼ 4.0E-06 cm/V
R ¼ dE/dt ¼ 1.0E + 06 V/cm/s
t0 ¼ 1/( γ R) ¼ 0.25 s
VScreen ¼ 7, 8, or 9 V
tscreen ¼ 2.5 s Exponential TF model

Cap
#

VBD (volts)
(pre-screen) F Z

Post
7 V screen
(VBD – ΔVBD)

Post
8 V screen
(VBD � ΔVBD)

Post
9 V screen
(VBD – ΔVBD)

1 1.00 0.025 �1.966 — — —

2 2.00 0.060 �1.556 — — —

3 2.50 0.095 �1.310 — — —

4 3.50 0.130 �1.125 — — —

5 9.00 0.165 �0.972 8.90 — —

6 9.50 0.201 �0.839 9.47 9.16 —

7 10.00 0.236 �0.720 9.99 9.90 —

8 25.00 0.271 �0.609 25.00 25.00 25.00

9 25.25 0.306 �0.506 25.25 25.25 25.25

10 25.50 0.342 �0.408 25.50 25.50 25.50

11 25.75 0.377 �0.314 25.75 25.75 25.75

12 26.00 0.412 �0.222 26.00 26.00 26.00

13 26.25 0.447 �0.133 26.25 26.25 26.25

14 26.50 0.482 �0.044 26.50 26.50 26.50

15 26.75 0.518 0.044 26.75 26.75 26.75

16 27.00 0.553 0.133 27.00 27.00 27.00

17 27.25 0.588 0.222 27.25 27.25 27.25

18 27.50 0.623 0.314 27.50 27.50 27.50

19 27.75 0.658 0.408 27.75 27.75 27.75

20 28.00 0.694 0.506 28.00 28.00 28.00

21 28.25 0.729 0.609 28.25 28.25 28.25

22 28.50 0.764 0.720 28.50 28.50 28.50

23 28.75 0.799 0.839 28.75 28.75 28.75

24 29.00 0.835 0.972 29.00 29.00 29.00

25 29.25 0.870 1.125 29.25 29.25 29.25

26 29.50 0.905 1.310 29.50 29.50 29.50

27 29.75 0.940 1.556 29.75 29.75 29.75

28 30.00 0.975 1.966 30.00 30.00 30.00
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region B, thus making this device more prone to failure during normal operation. The
10 V screen in Table 17.2 was very effective—it eliminated all three weak devices in
region B without producing significant degradation to the main group of good/strong
devices.

Table 17.2 Impact of voltage screening on capacitor breakdown distribution (using power-law TF
model)

tox ¼ 2.00E-06 cm
n ¼ 44
R ¼ dE/dt ¼ 1.00E + 06 V/cm/s
VScreen ¼ 7, 8, 9, or 10 V
tscreen ¼ 2.5 s
to∗ ¼ EBD/[(n + 1)R] Power-law TF model

Cap#
VBD (volts)
(pre-screen) F Z

Post 7 V
screen
(VBD –

ΔVBD)

Post 8 V
screen
(VBD –

ΔVBD)

Post 9 V
screen
(VBD –

ΔVBD)

Post 10 V
screen
(VBD –

ΔVBD)

1 1.00 0.025 �1.966 — — — —

2 2.00 0.060 �1.556 — — — —

3 2.50 0.095 �1.310 — — — —

4 3.50 0.130 �1.125 — — — —

5 9.00 0.165 �0.972 9.00 8.97 — —

6 9.50 0.201 �0.839 9.50 9.50 — —

7 10.00 0.236 �0.720 10.00 10.00 9.95 —

8 25.00 0.271 �0.609 25.00 25.00 25.00 25.00

9 25.25 0.306 �0.506 25.25 25.25 25.25 25.25

10 25.50 0.342 �0.408 25.50 25.50 25.50 25.50

11 25.75 0.377 �0.314 25.75 25.75 25.75 25.75

12 26.00 0.412 �0.222 26.00 26.00 26.00 26.00

13 26.25 0.447 �0.133 26.25 26.25 26.25 26.25

14 26.50 0.482 �0.044 26.50 26.50 26.50 26.50

15 26.75 0.518 0.044 26.75 26.75 26.75 26.75

16 27.00 0.553 0.133 27.00 27.00 27.00 27.00

17 27.25 0.588 0.222 27.25 27.25 27.25 27.25

18 27.50 0.623 0.314 27.50 27.50 27.50 27.50

19 27.75 0.658 0.408 27.75 27.75 27.75 27.75

20 28.00 0.694 0.506 28.00 28.00 28.00 28.00

21 28.25 0.729 0.609 28.25 28.25 28.25 28.25

22 28.50 0.764 0.720 28.50 28.50 28.50 28.50

23 28.75 0.799 0.839 28.75 28.75 28.75 28.75

24 29.00 0.835 0.972 29.00 29.00 29.00 29.00

25 29.25 0.870 1.125 29.25 29.25 29.25 29.25

26 29.50 0.905 1.310 29.50 29.50 29.50 29.50

27 29.75 0.940 1.556 29.75 29.75 29.75 29.75

28 30.00 0.975 1.966 30.00 30.00 30.00 30.00
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When comparing Tables 17.1 and 17.2, we see that for either the power-law
model (with n¼ 44) or for the exponential model (with γ ¼ 4.0 cm/MV), the models
tend to give similar screening results. However, in order to achieve nearly identical
screening results, a somewhat higher voltage was required when using the power-
law model. However, the higher voltage screen (10 V), needed by the power-law
model to eliminate all the bad/weak devices in region B, did not seem to harm the
good/strong devices (devices above region C).

Example Problem 3
Ametal component must operate safely under a normal tensile stress of 5 kpsi.
Ultimate tensile strength σTS data was collected for a random sample of
28 such components using a linear ramp rate of R ¼ dσ/dt ¼ 2 kpsi/min at
the expected component operating temperature. The σTS data is shown in the
figure below using a power-law model with n ¼ 5. Evaluate the overall
reliability impact if these devices were screened with σScreen ¼ 7, 8, 9, or
10 kpsi for a screening duration of tScreen ¼ 10 min. Which of these screens
would be the preferred screening approach? (Assume that the preferred
screening approach is the one that eliminates more bad/weak components
but creates the least amount of degradation to the good/strong components.)

-2.500
0.00 5.00 10.00 15.00 20.00 25.00 30.00

-2.000
-1.500
-1.000
-0.500
0.000
0.500
1.000
1.500
2.000
2.500

Z

σTS (kpsi)

Solution:
The time-to-failure at breakdown using the power-law model is given by: t0

∗

¼ σTS/[(n + 1)R]. Using the power-law TF model with n ¼ 5, the degradation
ΔσTS to the pre-screen ultimate tensile strength σTS due to a screening stress
σScreen acting for a duration of tScreen ¼ 10 min is given by Eq. (17.10):

ΔσTS ¼ σTS 1� 1� tScreen
t∗0

σScreen
σTS

� 	n� 
1= nþ1ð Þ( )

The equation above is used to calculate the degradation ΔσTS for each of
the pre-screen ultimate tensile strengths and this is shown in the table below.

(continued)
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The dashed table entries (—) mean that the degradation was severe enough to
eliminate these defective/weak devices during the screen.

Note that the 7 kpsi screen in the table above has optimal screening
effectiveness. It screens out all of the weak devices (ultimate tensile strengths
of σTS 	 10 kpsi) and it also produces the least amount of degradation to the
strong devices (σTS � 25 kpsi). Also, note that when the power-law exponent
n is low (less than 10), as this example problem with n ¼ 5, at least some
amount of screening-induced degradation ΔσTS extends even into the very
strongest devices in the distribution.

n ¼ 5
R ¼ dσ/dt ¼ 2 kpsi/min
σScreen ¼ 7, 8, 9 or 10 kpsi
tScreen ¼ 10 min
t0
∗ ¼ σTS/[(n + 1)R] Power-law model

Component
#

σTS
(kpsi)
(pre-screen) F Z

Post
7 kpsi
screen
(σTS –
ΔσTS)

Post
8 kpsi
screen
(σTS –
ΔσTS)

Post
9 kpsi
screen
(σTS –
ΔσTS)

Post
10 kpsi
screen
(σTS –
ΔσTS)

1 1.00 0.025 �1.966 — — — —

2 2.00 0.060 �1.556 — — — —

3 2.50 0.095 �1.310 — — — —

4 3.50 0.130 -1.125 — — — —

5 9.00 0.165 -0.972 — — — —

6 9.50 0.201 -0.839 — — — —

7 10.00 0.236 -0.720 — — — —

8 25.00 0.271 -0.609 24.97 24.93 24.88 24.79

9 25.25 0.306 -0.506 25.22 25.19 25.13 25.05

10 25.50 0.342 -0.408 25.47 25.44 25.39 25.31

11 25.75 0.377 -0.314 25.72 25.69 25.64 25.57

12 26.00 0.412 -0.222 25.97 25.94 25.90 25.83

13 26.25 0.447 -0.133 26.22 26.20 26.15 26.09

14 26.50 0.482 -0.044 26.47 26.45 26.41 26.34

15 26.75 0.518 0.044 26.73 26.70 26.66 26.60

16 27.00 0.553 0.133 26.98 26.95 26.92 26.86

17 27.25 0.588 0.222 27.23 27.21 27.17 27.12

18 27.50 0.623 0.314 27.48 27.46 27.42 27.37

19 27.75 0.658 0.408 27.73 27.71 27.68 27.63

20 28.00 0.694 0.506 27.98 27.96 27.93 27.88

21 28.25 0.729 0.609 28.23 28.21 28.18 28.14

22 28.50 0.764 0.720 28.48 28.47 28.44 28.39

23 28.75 0.799 0.839 28.73 28.72 28.69 28.65

(continued)
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24 29.00 0.835 0.972 28.98 28.97 28.94 28.90

25 29.25 0.870 1.125 29.23 29.22 29.19 29.16

26 29.50 0.905 1.310 29.48 29.47 29.45 29.41

27 29.75 0.940 1.556 29.74 29.72 29.70 29.66

28 30.00 0.975 1.966 29.99 29.97 29.95 29.92

Problems

1. A randomly selected sample of capacitors was ramped-to-failure using a ramp
rate of R ¼ 1 MV/cm/s at 105 �C. What is the time-to-failure t0 at the breakdown
field of 10 MV/cm and at 105 �C? Assume an exponential TF model with a field
acceleration parameter of γ ¼ 4.0 cm/MV.

Answer: t0 ¼ 0.25 s

2. A randomly selected sample of capacitors was ramped-to-failure using a ramp
rate of R ¼ 1 MV/cm/sec at 105 �C. What is the time-to-failure t∗0 at the
breakdown field of 10 MV/cm and at 105 �C? Assume a power-law TF model
with an exponent of n ¼ 44.

Answer: t∗0 ¼ 0.22 s

3. For the capacitors described in Problem 1 above, calculate the screening-induced
degradation ΔEBD for a capacitor with a pre-screen breakdown strength of
10 MV/cm. Assume that the screen is conducted with stressing field of 9 MV
for 5 s.

Answer: ΔEBD ¼ 0.11 MV/cm

4. For the capacitors described in Problem 2 above, calculate the screening-induced
degradation ΔEBD for a capacitor with a pre-screen breakdown strength of
10 MV/cm. Assume that the screen is conducted with stressing field of 9 MV
for 5 s.

Answer: ΔEBD ¼ 0.055 MV/cm

5. Toxic gas lines/pipes are expected to operate at a normal pressure of 4 kpsi. To
insure that the metal pipes can reliably withstand the normal operating pressure, a
random selection of such pipes was taken and the pressure was ramped-to-rupture
with a ramp rate of 1 kpsi/min at the expected operating temperature. The median
pre-screen rupture strength was determined to be 12 kpsi. Calculate the expected
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screening-induced degradation to the median pre-screen rupture strength if a
screening stress of 6 kpsi is applied for 1 min.

(a) Assume a power-law exponent of n ¼ 4.
(b) Assume a power-law exponent of n ¼ 7.

Answers: (a) ΔPBD ¼ 0.063 kpsi and (b) ΔPBD ¼ 0.0078 kpsi

6. Using the information found in Table 17.1, determine the screening effectiveness
of using a 23 V screen and the degradation impact to the good/strong devices.

Answer: Comparing the 9 and 23 V screens, with the exponential TF model, the
23 V screen is excessive—it does not eliminate anymore defects than does the 9 V
screen; in addition, the 23 V screen produces more degradation (ΔVBD) for the
good/strong devices.

7. Using the details found in Table 17.2, describe the screening effectiveness of
using a 23 V screen and the degradation impact to the good/strong devices.

Answer: Comparing the 10 and 23 V screens, with the power-law TF model, the
23 V is excessive—it does not eliminate anymore weak devices than does the
10 V screen; in addition, the 23 V screen produces more degradation (ΔVBD) for
the good/strong devices.

8. Using the details found in Example Problem 3, describe the screening effective-
ness of using a 14 psi stress and the degradation impact to the good/strong
devices.

Answer: Comparing the 7 kpsi and 14 kpsi screens, we see that the 14 kpsi screen
is excessive—it does not eliminate anymore defects than does the 7 kpsi screen;
in addition, the 14 kpsi screen causes more degradation (ΔσTS) to the good/strong
components.

9. A randomly selected group of 28 gas cylinders was ramped-to-rupture (using a
ramp rate of 0.50 kpsi/min at the expected operational temperature) and the
following rupture values (in units of kpsi) were obtained: 26.50, 1.00, 26.25,
2.00, 26.00, 2.50, 25.75, 3.50, 25.25, 9.00, 25.00, 9.50, 25.50, 10.00, 26.75,
28.00, 30.00, 27.00, 27.25, 29.75, 29.50, 29.25, 29.00, 28.75, 28.50, 28.25,
27.75, and 27.50. Assuming an operational pressure of 2 kpsi and a power-law.
TF model with an exponent of n ¼ 5, evaluate the screening impact/effectiveness
of applying a screening pressure of 1, 2, 3, or 4 kpsi for 1 min.

(a) Plot the rupture data as a normal distribution (Z-plot from Chap. 5).
(b) Identify the gas cylinder rupture values that represent a yield loss.
(c) Identify the gas cylinder rupture values that represent a reliability risk.
(d) What is the screening effectiveness when using a 1, 2, 3, or 4 kpsi screen for

1 min? Which is the optimal screen for this group of cylinders?
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Answers:

(b) Five rupture values less 	2 kpsi represent a yield loss.
(c) Three rupture values between 2 and 6 kpsi represent a reliability risk.
(d) A screen of at least 4 kpsi for 1 min is needed to eliminate all weak

components without producing significant degradation to the good/strong
components. This represents the optimal screen for the four screening condi-
tions presented.
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Chapter 18
Heat Generation and Dissipation

The adverse impact of temperature on device/material reliability has been empha-
sized often in this book. The degradation rate for most devices/materials tends to
accelerate exponentially with increasing temperature.1 Therefore, for reliability
reasons, lower temperature device operation is usually preferred. However, many
devices (both electrical and mechanical) can generate significant amounts of heat as
they are being operated. Once device operation begins, the rate of increase in
temperature of the device/material will depend upon on the heat generation within
the device, the heat capacity of the materials, and the heat dissipation from the
device to the heat sink (which is often the ambient). Elevated device temperature
during operation (versus the ambient temperature) creates a thermal gradient which
serves to drive heat flow from the device. In thermal equilibrium the heat dissipation
from the device will just match the heat generation within the device. Managing
device heat dissipation may require a significant engineering effort—but the
improvements in reliability can be worth the effort.

1 Device Self-Heating and Heat Transfer

Many devices generate heat during operation. Examples of heat generation during
device operation are abundant: combustion engines, furnaces, rockets, resistors,
transistors, transformers, our bodies, etc. We refer to such devices (which generate
heat during normal operation) as self-heating devices because no external heating
source is necessarily needed to elevate device temperature during operation.

Combustion engines, furnaces and rockets generate self heat through the burning
of fuels (exothermic chemical reactions). Electric motors, generators, transformers,

1In Chap. 12 (Sec. 7) a failure mechanism (Hot Carrier Injection) was discussed that can be contrary
to this general statement.
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relays, resistors, and transistors generate self heat through Joule heating processes.
Our bodies generate heat through metabolic processes (burning of food) and through
frictional processes (muscle to muscle interactions, tendons to muscle interactions,
ligament to bone interactions, etc.). The heat generation in all devices must be
eventually dissipated or a catastrophic rise in device temperature can occur. Fig-
ure 18.1 illustrates the heat dissipation/flow/transfer needed to prevent overheating.

In Fig. 18.1 we illustrate the dissipation/flow/transfer/flux of heat which is needed
to prevent the generation volume from overheating (excessive temperature rise
during device operation). As heat is generated within the volume, the temperature
within this region will increase relative to its surroundings. The thermal gradient
created will thus serve to drive heat flow from the higher temperature generation
volume to the lower temperature surroundings/ambient. The rate at which the
temperature will increase within the generation volume will be determined by the
input power, the heat capacity of the materials within the volume, and the heat
dissipation rate. Thermal equilibrium will be established when the heat dissipation
rate from the volume just matches the heat generation rate within the volume.

1.1 Energy Conservation

We need to develop a dynamical equation that can be used to describe heat
generation, temperature rise and heat dissipation. We first start with a statement of
energy conservation (First Law of Thermodynamics):

Heat Generated ¼ Heat Absorbedþ Heat Transferred: ð18:1Þ

JH JH

JHJH

JH
JH

TLow

TLow

TLow

TLow

TLow

TLow

TLow

TLow

G

THigh

Fig. 18.1 Device operation often produces heat generation G (depicted here by the conventional
symbol for an electrical resistor which generates heat when a current flows through it). The heat
generation will cause the temperature of the volume to increase. Heat flux JH from the volume will
occur in a direction from higher temperature to lower. Thermal equilibrium will occur when the heat
flow from the generation volume just matches the heat generation within the volume
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If no heat is being generated then we simply have:

Heat Absorbed ¼ �Heat Transferred: ð18:2Þ

Equation (18.2) states that: under the conditions of no heat generation, the heat
absorbed must be equal but opposite to the heat transferred. Heat absorption (or loss)
by a material will raise (or lower) the internal energy U. The internal energy of a
system is the sum of the kinetic and potential energy of the atoms in the system.2 If
the specific heat c3 and mass M of the material are known, then a change in internal
energy ΔU due to heat flow can be determined4:

ΔU ¼ M

ZT2

T1

c Tð ÞdT : ð18:3aÞ

For cases where the specific heat c is approximately constant over the temperature
range of interest, Eq. (18.3a) simply reduces to:

ΔU ¼ Mc T2 � T1ð Þ ¼ McΔT: ð18:3bÞ

The specific heat, thermal conductivity and density of selected materials are
shown in Table 18.1. Note that water is an excellent cooling agent—not only
because of its relative abundance but also due to the fact that its specific heat is
relatively high.5

The heat/thermal capacity CTh of a constant volume V of material is given by:

CTh ¼
Z

c xð Þρ xð ÞdV , ð18:4Þ

where c(x) is the specific heat at constant volume and ρ(x) is the density of the
material at the location x ¼ (x1,x2,x3) within the volume V. One should remember

2The term external energy is usually reserved for any relative motion of the macroscopic system
and/or any system energy associated with external fields.
3Often the specific heat is subscripted as cv (specific heat at constant volume) or cp (specific heat at
constant pressure). This textbook will use c ¼ cv.
4In general, the internal energy of a system can be changed by the flow of Heat (into or out of
system) and/or byWork (done on or by system). The conservation of energy statement (dU¼ δHeat
+ δWork) is often referred to as the First Law of Thermodynamics. δHeat and δWork imply that
these are not exact differentials. Thus, before we can integrate, we must know details of the
processes by which the heat is changed and/or how the work is performed.
5Using Eq. (18.3b) and solving for ΔT, you can see that water (due to its relatively large specific
heat) is capable of absorbing significant amounts of heat with only relatively small changes in its
temperature. Now you can perhaps better understand why water is an excellent cooling agent and
widely used—from nuclear reactors and combustion engines to fire fighting.
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that thermal capacity CTh is the ability to store heat for an incremental increase in
temperature. It is analogous to electrical capacitance which is the ability to store
charge for an incremental increase in voltage. Also, remember the analogy— current
flows due to a potential difference and heat flows due to a thermal difference.
Similarly, electrical resistances impede current flow and thermal resistances impede
heat flow. Thus, similar to electrical resistances, one can think of thermal resistances
as being in either series or in parallel (as illustrated in Problems 1, 2 and 3 at the end
of this chapter).

1.2 General Heat Flow Equation

Let us now reconsider Eq. (18.1) in its general form (when we have heat generation,
absorption and dissipation) and let us suppose that the heat generation region (shown
in Fig. 18.1) is an infinitesimal unit volume such that Eq. (18.1) can be written as:

g x; tð Þ ¼ ρ xð Þc xð Þ∂ T x; tð Þ½ �
∂t

þ ~∇ � ~JH x; tð Þ: ð18:5Þ

Here, g(x,t) is the heat generation per unit time, per unit volume (power density);
x ¼ (x1,x2,x3) represents the position coordinates; t is the time; ρ(x) is the density of
the material within the unit volume; c(x) is the specific heat of the material within the
unit volume; T(x,t) is the temperature within the unit volume; and JH(x,t) is the heat
flux from the unit volume. The heat flux JH from the generation region is driven by a
temperature gradient and is described by Fourier’s Law:

Table 18.1 Specific heat, density and thermal conductivity for selected materials at 25 �C

Material Density [103 kg/m3]
Specific heat
[kJ/(kg K)]

Thermal conductivity
[kW/(m K)]

Silicon 2.33 0.69 0.084

Aluminum 2.69 0.90 0.250

Copper 8.96 0.39 0.400

Lead 11.36 0.13 0.030

Gold 19.32 0.13 0.310

Granite 2.70 0.79 0.002

Silicon nitride 3.20 0.63 0.033

Silicon dioxide 2.60 0.84 0.001

Water 1.00 4.19 0.0006

Note that the units of specific heat c, as shown in table, are in units utilizing the temperature in
Kelvin. Often you will see the specific heat c also expressed in units of �C. This is acceptable if you
are only using it to calculate a temperature difference because ΔT(K) ¼ ΔT(�C).
The specific heat of a material is approximately independent of temperature above its Debye
temperature, which can be 25 �C or less for many materials
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~JH x; tð Þ ¼ �eκ � ~∇T x; tð Þ, ð18:6Þ

where the temperature T(x,t) is a function of the position coordinates x and time t.
The thermal conductivity κ is, in general, a tensor (direction dependent). The
negative sign in Fourier’s law is needed to ensure that heat will always flow in a
direction from higher temperature to lower temperature. If the material in volume
V (through which the heat flows) is homogeneous and isotropic, then κ is simply a
scalar. Fourier’s Law is very important because it tells us that heat will spontane-
ously flow as long as a temperature difference/gradient exists. This is illustrated in
Example Problem 1.

Example Problem 1
An aluminum block of 1 kg mass at 25 �C and with a specific heat of cAl ¼
0.90 kJ/(kg K) is brought into thermal contact with a copper block of 1 kg mass
at 500 �C and with a specific heat of cCu ¼ 0.39 kJ/(kg K). Assuming that the
blocks are perfectly thermally insulated on all sides, except for their thermal
contact interface, find the equilibrium temperature for the two blocks after they
are brought into thermal contact as illustrated below. Assume that no heat
generation exists in this example problem, only heat conduction.

Solution
Let us start with the conservation of energy and write:

UA1 þ UCu ¼ constant:

Thus, conservation of energy implies:

ΔUA1 ¼ �ΔUCu:

This means that the heat/energy gained by the Al block must be equal to the
heat/energy lost by the Cu block. Thus, using the previous equation plus
Eq. (18.3b) one can write:

(continued)
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MAlcA1ΔTAl ¼ �MCucCuΔTCu

) MAlCAl T final � T initialð ÞAl ¼ �MCucCu T fmal � T initia1ð ÞCu
According to Fourier’s Law, heat will continue to flow until (Tfinal)Al ¼

(Tfinal)Cu ¼ Tequilibrium, therefore:

MAlCAl Tequilibnum � T0,Al
� � ¼ MCucCu T0,Cu � Tequilibnum

� �
:

Solving for the equilibrium temperature, one obtains:

Tequilibnum ¼MAlcAlT0,Al þMCucCuT0,Cu

MAlcAl þMCucCu

¼
1kg 0:90

kJ
kgK

� �
298Kð Þ þ 1kg 0:39

kJ
kgK

� �
773Kð Þ

1kg 0:90
kJ
kgK

� �
þ 1kg 0:39

kJ
kgK

� �
¼ 441:6K ¼ 168:6

�
C:

Therefore, when the blocks come into thermal equilibrium, in a perfectly
insulated container, each block should be at a temperature of approximately
169�C.

If we now return to Eq. (18.5) and integrate over the entire volume V of interest
(which contains the generation region plus all the material(s) between the generation
region and heat sink) then we obtain:Z

V

g x; tð ÞdV ¼
Z
V

ρ xð Þc xð Þ∂ T x; tð Þ½ �
∂t

dV þ
Z
V

~∇ � ~JH x; tð ÞdV : ð18:7Þ

Assuming that the heat generation is uniform within the generation region VGen

(and zero elsewhere) and using the divergence theorem,6 we can write:

6Recall that the divergence theorem states:Z
V

~∇ � ~J dV ¼
Z
A

~J � d~A, where V is the volume of interest which is bounded by a surface of

area A.
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G tð Þ ¼
Z
V

ρ xð Þc xð Þ∂ T x; tð Þ½ �
∂t

dV þ
Z
A

~JH x; tð Þ � d~A, ð18:8Þ

where G(t) ¼ g(t)VGen is the input power (heat generation per unit time) in the
generation volume VGen and where A is the area of the surface which bounds the
volume V of interest.

2 Steady-State Heat Dissipation

Let us now consider cases where the heat generation in VGen is independent of time
[G(t) ¼ G0 ¼ constant] and let us further assume that the entire volume V of interest
is in thermal equilibrium, i.e.,

∂ T x; tð Þ½ �
∂t

¼ 0: ð18:9Þ

Thus, under the conditions of thermal equilibrium, the heat capacities of the
materials play no role and Eq. (18.8) reduces to:

G0 ¼
Z
A

~JH xð Þ � d~A: ð18:10Þ

Equation (18.10) simply states that in thermal equilibrium, the heat generation
rate within the volume of interest must be equal to the heat dissipation rate (the heat
per unit time which crosses the surface of area A enclosing the volume V of interest).

In Fig. 18.2 we show a rectangular metal plate which is embedded in a material of
volume Vwith uniform thermal conductivity κ. The embedded plate is then placed in
thermal contact with a heat sink at constant temperature of TSink.

7 The rectangular
plate is heated at a constant generation rate of G0. The question that we would like to
address is—for a constant input power of G0 into the metal plate, what is the highest
temperature that TGen will reach before the metal plate will come into thermal
equilibrium with its surroundings?

If, in Fig. 18.2, the material thickness S0 is much less than the other material
dimensions (Si 6¼0), then the lowest thermal resistance path is from the bottom of the
metal plate to the heat sink; and, this will be the dominant heat flow path. Under
these conditions, and using Eq. (18.6), then Eq. (18.10) simply reduces to:

7In heat flow analysis, the heat sink fixes the temperature at specified locations and plays a role
similar to the use of ground in electrical circuits.
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G0 ¼
Z
A

~JH xð Þ � d~A

ffi JHA0 ¼ �κ
ΔT
Δx

� �
A0 ¼ κ

TGen � TSink

S0

� �
A0,

ð18:11Þ

where A0 is the heat dissipation area.8 Therefore, the equilibrium temperature of
the rectangular metal plate becomes:

TGen ¼ TSink þ G0
S0
κA0

� �
, ð18:12Þ

where S0 is the thickness of the material between TGen and TSink, κ is the thermal
conductivity of the material between TGen and TSink, and A0 is the heat
dissipation area.

Often Eq. (18.12) is simply expressed as a maximum temperature increase/rise
ΔTmax:

Area = A0

Temp  = TGen

Temp of Heat Sink = TSink

S0

S3

S1S2

Material Thermal Conductivity = κ

S4

S5

Material Volume = V

Fig. 18.2 Rectangular metal plate is embedded in a material of volume V with uniform thermal
conductivity κ. The embedded plate is in thermal contact with a heat sink. S0 is the thickness of the
material between the plate and heat sink. The thickness S0 will be assumed to be much less than the
other material dimensions (Si6¼0). The volume V of interest contains the materials in the generation
region (the metal plate) plus all the materials between the heat generation region and the heat sink.
The top/bottom surface of this thin metal plate has an area of A0

8Actually, not all of the heat flow (from metal plate bottom surface area A0) is vertically downward.
Part of the heat flow will be from the metal plate spreading laterally. Thus, the true heat flow across
the surface area A, which bounds the volume V of interest, will be through an effective area Aeff such
that Aeff > A0. However, if S0 is much less than the metal plate dimensions (length and width), then
Aeff � A0.
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ΔTmax ¼ TGen � TSink ¼ S0
κA0

� �
G0 ¼ θ � Power, ð18:13Þ

where θ will be referred to as the thermal resistance and is given by:

θ ¼ S0
κA0

� �
: ð18:14Þ

Since the input power G0 is often expressed in the units Watts (W), then the
thermal resistance θ (in this textbook) will be expressed in units (oC/W).

Example Problem 2
Assume that the embedded metal plate shown in Fig. 18.2 is being heated
electrically (either by resistive or inductive methods) with a constant input
power of 10 W. Find the maximum temperature rise for the embedded metal
plate assuming that: the metal plate bottom surface area is 5 cm2, the plate is
embedded in a material with thermal conductivity κ ¼ 12 mW/�C cm and the
thickness of the material between the metal plate and the heat sink is S0 ¼ 1.0
cm. Furthermore, assume that S0 is much smaller than all the other material
dimensions (Si 6¼0).

Solution
The thermal resistance θ can be modeled/estimated using Eq. (18.14):

θ ¼ S0
κA0

� �
¼ 1:0cm

12mW=�C-cmð Þ 5cm2ð Þ ¼ 16:7
�C
W

:

The maximum temperature rise ΔTmax of the metal plate relative to the heat
sink is given by Eq. (18.13):

ΔTmax ¼ TGen � TSink ¼ θ � Power ¼ 16:7
�
C=W

� �
10Wð Þ

¼ 167
�
C:

Therefore, for the embedded metal plate described, which is dissipating a
power of 10 W, the metal plate temperature will rise to a maximum of 167 �C
above heat sink temperature. At this elevated temperature, the heat dissipation
rate from the metal plate will just match the heat generation rate within the
plate and the system will come into thermal equilibrium. In thermal equilib-
rium, the elevated temperature of the plate will remain at a constant level as
long as the input power level remains constant.
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3 Effective Thermal Resistance

The thermal resistance from TGen to TSink (for the metal plate shown in Fig. 18.2) was
easy to model/estimate, as described in Example Problem 2. However, there will
often be heat flow problems when a theoretical modeling of the thermal resistance is
quite difficult and/or time-consuming. Such an example is illustrated in Fig. 18.3.

In Fig. 18.3 we see that the heat generation region is non-symmetrical which
makes heat dissipation modeling difficult. Second, this heat generation region is
surrounded (non-symmetrically) by several materials with different thermal conduc-
tivities that also add to the modeling complexity. Under such complex modeling
conditions, it is often easier to simply measure the effective thermal resistance (from
the generation region temperature TGen to the ambient region at temperature TAmb)
than it is to try to model the thermal resistance. The effective thermal resistance is
given by:

θeff ¼ ΔT
Power

¼ TGen � TAmb

Power
: ð18:15Þ

A common experimental approach is to simply dissipate a known amount of fixed
power in the generation region and then measure the equilibrium temperature rise of
the generation region versus the ambient temperature (with a thermal sensor placed
very close to or within the generation region).

G

TGen

TAmbient

TAmbient

TAmbient

TAmbient

TAmbient

TAmbient

TAmbient

TAmbient

Fig. 18.3 An arbitrary heat generation region is illustrated which is quite complicated (has little/no
symmetry) and it is surrounded by a non-symmetrical arrangement of various material types with
different thermal conductivities. When analyzing heat flow problems such as this, which possess
little/no symmetry, it is often easier to simply measure the effective thermal resistance θeff (between
the generation region and heat sink/ambient) rather than trying to model the thermal resistance.
Here, the volume V of interest contains the material in the heat generation region plus all the
materials between the heat generation region and heat sink (which is the ambient in this illustration).
The heat dissipation area A is the area of the surface which bounds the volume V
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Example Problem 3
In the assembly process for ICs, a silicon chip is often attached to a metal-pad/
lead-frame and then the chip and lead-frame assembly is molded in plastic.
The plastic is then cured and then the assembly goes through trim and form—
which creates the pins which protrude from the package. Finally, the pins are
soldered to a circuit board. This assembly/arrangement is illustrated below.

chip

Plastic

Circuit Board

Natural
Air

Flow

Natural
Air

Flow

For normal IC operation, the heat generation region within the chip is
located near the top of the silicon chip where the diffusions/junctions reside.
For this reason, usually one speaks in terms of chip junction-temperature as
being the critical reliability care-about. Once the packaged IC is soldered onto
a circuit board and the device is operated, as illustrated above, the rise in the
device temperature will generally produce some natural convection air flow.
The thermal resistance θJC (from chip junction to plastic-case surface) is often
measured rather than modeled. The thermal resistance θCA (from case surface
to ambient) can likewise be measured.

In this example problem, let us assume that the chip dissipates a constant
power of 1W.9 A metal sensor on the chip records a steady-state chip junction-
temperature of 60 �C. A thermocouple was used to measure the steady-state
plastic-case surface temperature (above the chip) and it was found to be 35 �C.
A steady-state ambient air temperature of 25 �C was recorded using a ther-
mometer located a relatively great distance from the device.

(a) What is the effective thermal resistance θJC that exists between the chip
junction and the plastic-case surface?

(b) What is the effective thermal resistance θCA that exists between the plastic-
case surface and the ambient air?

(continued)

9Remember, the chip power P is given simply by: P ¼ (Current) � (Voltage).
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(c) What is the expected silicon chip steady-state junction temperature when
the IC dissipates a constant power of 3.2 W?

Solution:

(a) The effective thermal resistance between chip junction and plastic-case
surface is given by:

θJCð Þeff ¼
ΔT

Power
¼ TGen � TCase

Power

¼ 60� 35ð ÞoC
1W

¼ 25oC=W:

(b) The effective thermal resistance between plastic-case surface and ambient
is given by:

θCAð Þeff ¼
ΔT

Power
¼ TCase � TAmb

Power

¼ 35� 25ð ÞoC
1W

¼ 10oC=W:

(c) The effective thermal resistance between the chip junction and the ambient
is given by:

θJAð Þeff ¼ θJCð Þeff þ θCAð Þeff ¼ 25þ 10ð ÞoC=W
¼ 35oC=W:

The maximum chip junction-temperature rise during constant 3.2 W oper-
ation becomes:

ΔTmax ¼ T Junction � TAmb ¼ θJAð Þeff � Power
¼ 35oC=Wð Þ 3:2Wð Þ
¼ 112oC

Thus, the chip junction-temperature becomes:

TJunction ¼ TAmb þ ΔTmax

¼ 25oC þ 112oC

¼ 137
�
C

(continued)
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Example Problem 4
Using the information described in Example Problem 3, it was determined that
when the chip dissipates a power of 3.2 W, the chip junction-temperature will
rise to a steady-state temperature of 137 �C. Let us suppose that the chip was
designed to operate reliably at a maximum junction temperature of 110 �C. In
an effort to lower the chip junction-temperature from 137 �C, a heat sink is
added to the chip plastic-package surface and a fan is also added to create a
forced air flow condition (as illustrated below).

Forced
Air

Flow

Metal Heat Sink

Metal Fins

Natural
Convection

chip

Plastic

Circuit Board

A heat sink is normally a metal structure which is attached to the plastic-
package surface with a thermally conductive adhesive. The metal heat sink
with fins serves to increase the effective heat dissipation area of the plastic-
package surface thus reducing the effective thermal resistance (θCA)eff from
plastic case surface to ambient. If the combination of heat sink plus increased
air flow reduces the effective thermal resistance (θCA)eff from 10 to 1 �C/W,
then what impact will it have on device junction-temperature during 3.2 W
operation?

Solution
Without heat sink, the steady-state chip junction-temperature was determined
to be 137 �C with 3.2 W operation (as described in Example Problem 3). With
heat sink plus increased air flow,

θCAð Þeff ¼ 10oC=W ! 1oC=W:

Therefore,

θJAð Þeff ¼ θJCð Þeff þ θCAð Þeff ¼ 25þ 1ð ÞoC=W
¼ 26oC=W:

(continued)
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The chip junction-temperature rise during 3.2 W chip operation (with heat
sink plus increased air flow) becomes:

ΔT ¼ T Junction � TAmb ¼ θJAð Þeff � Power
¼ 26oC=Wð Þ 3:2Wð Þ
¼ 83:2oC

This leads to a chip junction-temperature of:

T Junction ¼ TAmb þ ΔT

¼ 25oCþ 83:2oC

¼ 108:2oC

Therefore, with the addition of a heat sink plus increased air flow, the
device junction-temperature can be kept below the design requirement of
	110 �C.

4 General Transient Heating and Heat Dissipation

The general equation for transient heating, heat absorption and dissipation of the
generated heat is given by Eq. (18.8) and is reproduced here10:

G tð Þ ¼
Z
V

ρ xð Þc xð Þ∂ T x; tð Þ½ �
∂t

dV þ
Z
A

~JH x; tð Þ � d~A: ð18:16Þ

This equation simply states that the heat generation rate G(t) must be equal to the
heat absorption rate plus the heat transfer rate. Eq. (18.16) thus permits one to
determine the rate at which the temperature will rise in the volume V (which contains
the material in the generation region plus all the materials between the generation
region and the heat sink).

10Recall that the volume V of interest contains all of the materials in the generation region plus all
the materials between the generation region and the heat sink/ambient. A is the area of the surface
that bounds the volume V of interest.
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4.1 Effective Thermal Resistance Revisited

Let us reconsider the heat-flux/transfer term on the far right of Eq. (18.16) and use an
identity11 to rewrite the heat flux term as:

Z
A

~JH x; tð Þ � d~A ¼ A

R A
0
~JH x; tð Þ � d~AR A

0 dA

" #
¼ A JHh i

ð18:17Þ

where hJHi represents the average flux of heat across the surface of area A which
bounds the volume V of interest. However, the average heat flux across this surface
area A can be expressed as:

JHh i ¼ �κ
ΔT
Δx

� �
¼ κ

Δx

D E
TGen tð Þ � TAmb½ �, ð18:18Þ

where Δx is the thickness of the material(s) from the generation region to the
ambient/heat-sink and κ is the thermal conductivity(ies) of the material(s). The heat
flux can now be written as:Z

A

~JH x; tð Þ � d~A¼ A JHh i

¼ A
κ

Δx

D E
TGen tð Þ � TAmb½ �

¼ 1
θeff

� �
TGen tð Þ � TAmb½ �,

ð18:19Þ

where θeff is the effective thermal resistance given by:

θeff ¼ 1
A

Δx
κ

� �
: ð18:20Þ

11Identity used: A ¼
ZA
0

dA:
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4.2 Heat Capacity

Let us now reconsider the heat absorption rate term in Eq. (18.16). Assuming that the
density(ies) ρ, specific heat(s) c and coordinates x ¼ (x1, x2, x3) are independent of
time, then the limits of integration are independent of time and we can change the
order in which we perform the integration and differentiation and write12:Z

V

ρ xð Þc xð Þ∂T x; tð Þ
∂t

dV ¼
Z
V

ρ xð Þc xð Þ∂ T x; tð Þ � TSink½ �
∂t

dV

¼ d
dt

Z
V

ρ xð Þc xð Þ T x; tð Þ � TSink½ �dV :
ð18:21aÞ

Furthermore, if we are only interested in the temperature difference between the
generation region TGen and the fixed heat sink TSink [plus assuming that the temper-
ature within the generation region is uniform T(x,t) ¼ TGen(t), then we can write:

d
dt

Z
V

ρ xð Þc xð Þ TGen tð Þ � TSink½ �dV

¼ d
dt

TGen tð Þ � TSink½ �
Z
V

ρ xð Þc xð Þ½ �dV

¼ CTh
d
dt

TGen tð Þ � TSink½ �,

ð18:21bÞ

where CTh is the thermal capacity of the materials in the volume V of interest
[refer to Eq. (18.4)].

5 Modeling Dynamical Heat Generation and Dissipation

Using Eqs. (18.19) and (18.21b), the dynamical heat generation and dissipation
equation [Eq. (18.16)] becomes:

G tð Þ ¼ CTh
d
dt

TGen tð Þ � TAmb½ � þ TGen tð Þ � TAmb

θeff
: ð18:22aÞ

Rearranging Eq. (18.22a), one obtains the Euler differential equation:

12Since Tsink is assumed to be a fixed temperature, then we have used: ∂ T x;tð Þ�TSink½ �
∂t ¼ ∂ T x;tð Þ½ �

∂t .
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d
dt

ΔTð Þ þ ΔT
τ

¼ f tð Þ, ð18:22bÞ

where ΔT ¼ TGen(t) � TAmb, f(t) is the time-dependent heat-generation rate
function given by f(t) ¼ G(t)/CTh, and τ is the thermal time-constant given by τ ¼
CTh θeff.

In Table 18.2, we compare heat generation and dissipation with current genera-
tion and flow. When a voltage VGen is generated above Vo (at t ¼ 0 for circuit on the
left), a parallel current flow path is created where I1(t) is the current flow through the
resistor R and I2(t) is the current flow to the capacitor C. This parallel-path conduc-
tion will continue until the capacitor is fully charged at which time all the steady-
state current must now flow through the resistor.

The heat-flow circuit (on the right in Table 18.2) is analogous to the current-flow
circuit on the left. The heat generation (starting at t ¼ 0 for the circuit on the right)
will cause the temperature of the generation region TGen to rise above TSink and the
generated heat to start flowing (in parallel). Some of the generated heat G1(t) flows
through the effective thermal resistance θeff to the heat sink at TSink and some of the
generated heat G2(t) goes into charging the thermal capacitance CTh (heating the
surrounding materials). This heating of the surrounding materials will continue until
the thermal capacitance is fully charged. At this time the steady-state thermal
gradients created throughout the materials are sufficient to drive a heat flow to
sink which just matches the heat generation. Note that by using current conservation
(for current flow) and energy conservation (for heat flow), the same type of Euler
differential equation is developed for each (as shown in Table 18.2).

As one can verify by inspection, the solution to the Euler differential equation,
Eq. (18.22b), is given by:

Table 18.2 Equivalent circuits
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ΔT tð Þ ¼ ΔT0exp �t

τ

� 	
þ exp �t

τ

� 	Z t

0

f tð Þexp t

τ

� 	
dt, ð18:23Þ

where ΔT0 ¼ TGen(t ¼ 0) � TAmb/Sink.

5.1 Thermal Relaxation

Let us suppose that the input power to the generation region VGen just matches the
heat dissipation rate from the volume V of interest. Under these thermal equilibrium
conditions, the generation region VGen will have a constant temperature rise of ΔTo.
Let us further suppose that the input power is suddenly stopped at some time t ¼
0. The thermal relaxation rate for the generation region can be determined using
Eq. (18.23) by setting the generation rate term to zero [f(t) ¼ 0]. This gives:

ΔT tð Þ ¼ ΔT0exp �t

τ

� 	
, ð18:24Þ

where the thermal time-constant τ is given by τ ¼ CThθeff. CTh is the thermal
capacity and θeff is the effective thermal resistance. Therefore, the thermal capacity
CTh of the materials (in volume V of interest which also contains the generation
region) plus the effective thermal resistance θeff of these materials dictate the thermal
relaxation time τ. Figure 18.4 shows the thermal relaxation with time. Note that the
temperature rise ΔT(t) will be 99.3 % relaxed after five time-constants (t ¼ 5τ).13

ΔT0

ΔT (t)

ΔT0

ΔT (t)
⎠
⎞

⎝
⎛−= t

texp

t/t

Fig. 18.4 Thermal
relaxation for heat
generation region after the
input power is suddenly
stopped at t ¼ 0. The
temperature of the
generation region will be
99.3 % relaxed after five
thermal time-constants τ

13Thermal relaxation after a time t¼ 5τ is given by: ΔT0�ΔT t¼5τð Þ
ΔT0

¼ 1� exp 5τ
τ

� � ¼ 0:993 ¼ 99:3%.

After t ¼ 10τ, the thermal relaxation is 99.995 % complete.
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Example Problem 5
Assume that a metal plate is embedded in plastic, similar to that shown in
Example Problem 2. Also, assume that the effective thermal resistance for the
metal plate embedded in the plastic is θeff ¼ 16.7 �C/W and that the effective
heat capacity of the metal plate and plastic is CTh ¼ 24.2 W sec/�C.

(a) For a constant input power level of 5 W to the metal plate, what is the
expected steady-state temperature rise of the metal plate?

(b) What is the effective thermal time-constant for this system?
(c) If the constant input power is on long enough for all temperatures to reach

steady state, but then the power is suddenly stopped at t¼ 0, how long will
it take the metal plate to relax to ½ of its original steady-state temperature
rise?

Solution

(a) The steady-state temperature rise for the metal plate is given by:

ΔTð ÞMax ¼ θeff � Power ¼ 16:7
�
C
W

� �
� 5Wð Þ ¼ 83:5oC:

(b) The thermal time-constant τ for this metal plate and plastic is given by:

τ ¼ CThθeff ¼ 24:2
Ws
�C

� �
16:7

�
C
W

� �
¼ 404s:

(c) When input power to the metal plate is suddenly stopped, the fall in
temperature of the metal plate is given by:

ΔT tð Þ ¼ ΔTMaxexp �t

τ

� 	
) ΔT tð Þ

ΔTMax
¼ ΔTMax=2

ΔTMax
¼ exp �t1=2

τ

� �
) t1=2 ¼ τ ln 2ð Þ ¼ 404sð Þ ln 2ð Þ ¼ 280s:

In summary, t1/2 ¼ 280 s is the time required for the initial temperature rise
ΔTMax of the metal plate to relax to 50 % of its original value.
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Example Problem 6
On a very cold winter day (Tamb/outside ¼ �10 �C), the heating power is
suddenly lost in a home. In one of the empty rooms in the house (with an
exterior wall containing a glass window) the average temperature of the air in
the room was observed to drop from 23 to 8 �C in 2 h. Assuming that the
empty room is 14ft by 14ft by 8 ft, that the room is relatively air tight, and that
the specific heat of air at constant volume is cV ¼ 21.0 J/mol �C, what is the
effective thermal resistance of the external wall? For this problem, ignore the
thermal capacity contribution from the room walls and assume that the house
is located at sea level so that the air pressure can be assumed to be 1 atm ¼
1.013 � 105 N/m2.

Solution
The thermal time-constant can be determined by:

ΔT tð Þ ¼ ΔT0exp �t

τ

� 	
) 23oC� 8oC

23oC� �10oCð Þ ¼ exp � 2h
τ

� �
) τ ¼ � 2h

ln 15=33ð Þ ¼ 2:54h:

The constant volume V of air in the room is given by:

V ¼ 14 � 14 � 8ð Þft3 1m
3:281ft

� �3

¼ 44:4m3:

The heat capacity CTh of the constant volume V of air can be written as:

CTh ¼ ncV ,

where n is the number of moles of air molecules and cV is the specific heat
per mole at constant volume. n can be determined using the ideal gas law
approximation:

n ¼ PV
RT

¼ 1:013� 105 N
m3

� �
44:4m3ð Þ

8:31 J
mo1�K

� �
23þ 273ð ÞK ¼ 1:83� 103mo1:

The heat capacity CTh of the constant volume V air in the room is:

(continued)
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CTh ¼ ncV ¼ 1:83� 103mo1
� �

21:0
J

mo1oC

� �
¼ 3:84� 104

J
�C

:

The effective thermal resistance θeff can be determined from the thermal
time-constant τ and it is given by:

τ¼ CThθeff

) θeff ¼ τ

CTh
¼

2:54hð Þ 3600S
1h

� �
3:84� 104

J
�C

¼ 0:24
�
C
W

:

For the room described in this example problem, please note that if we
added furniture, a granite-top table, and a large aquarium (filled with water) to
the room—this will add heat capacity to the room and this will increase the
thermal time-constant for the room. Thus, the room will cool off much more
slowly when the heating power is lost to the room. This is why “passive solar
homes” make extensive use of materials with large heat capacities in the
rooms. Thus, when the sun goes down on a cold winter evening (the solar
heating power is lost to home), the temperature inside the house drops
relatively slowly during the night.

5.2 Thermal Rise with Constant Input Power

Let us now consider the situation where the generation region is at the same
temperature as the ambient (ΔT0 ¼ 0) and we introduce power into the generation
region at t ¼ 0 and the input power remains constant, G(t) ¼ G0 ¼ constant. Under
these conditions, Eq. (18.23) reduces to:

ΔT tð Þ ¼ exp �t

τ

� 	Z t

0

G0

CTh
exp

t

τ

� 	
dt

¼ G0

CTh
exp �t

τ

� 	
τexp

t

τ

� 	h i t
0

¼ τG0

CTh
1� exp �t

τ

� 	h i
¼ θeffG0 1� exp �t

τ

� 	h i
¼ ΔTð Þmax 1� exp �t

τ

� 	h i
:

ð18:25Þ
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One will note that (ΔT )max ¼ θeffG0 is the maximum temperature rise when the
generation region comes into thermal equilibrium for a constant input power.

Let us assume that the temperature of the generation region is equal to TSink at time
zero when the constant power Go is applied. We will further assume that the volume
V of interest contains materials with a heat capacity of CTh and that they have an
effective thermal resistance of θeff. In Fig. 18.5 we show the temperature rise ΔT(t) of
the generation region when a constant power input is suddenly given to the gener-
ation region. We can see that the temperature rise tends to saturate for times t > 5τ,
where τ ¼ CThθeff and the saturation temperature level is given by ΔTmax ¼ θeffG0.

5.3 Thermal Rise and Relaxation with Single Power Pulse

Let us consider the case of a simple rectangular shaped power pulse as illustrated in
the insert of Fig. 18.6.14 We will assume that the temperature of the generation
region is equal to TSink at time zero. If the power is assumed to be on for at least ten
thermal time-constants τ and then off for another ten thermal time-constants, then the
temperature (rise and fall) is shown in Fig. 18.6.

Under the conditions of a single power pulse, which is on for at least 10 thermal
time-constants τ, the temperature rise ΔT(t) will tend to saturate (99.995 %) at a

ΔTmax

ΔT(t)

ΔT(t)

ΔT(t)
TSink

t/t

ΔTmax = qeff  • G0

G(t)

t/t

G0

Fig. 18.5 Temperature rise ΔT for generation region versus time with constant power input G0.
The maximum temperature rise is ΔTmax ¼ θeffG0. The temperature rise tends to saturate (99.3 %)
for 5 time-constants (t ¼ 5τ). The insert shows a constant input power level G0 versus time

14The actual power pulse could be more complicated than a simple rectangular shape; however, in
Chap. 14 we learned how to convert complicated waveforms into rectangular equivalents.
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maximum of ΔTmax ¼ θeffG0. Also, nearly full thermal relaxation occurs within
another 10 thermal time-constants. The thermal time-constant is given by τ ¼
CThθeff.

5.4 Thermal Rises and Relaxations with Periodic Power
Pulses

Let us now consider what would happen if we have periodic power generation in the
volume as illustrated in Fig. 18.7.

During each period, there will be a temperature-rise portion of the period due to
the input power being on and a temperature-fall portion of the period due to the input
power being off. For example, during the first period, we have a temperature rise and
fall portion of the period given by:

ΔT rise 0 	 t 	 ton½ � ¼ ΔT t ¼ 0½ � þ θeffG0 1� exp �t

τ

� 	h i
ð18:26aÞ

and

ΔT fall ton 	 t 	 tp

 � ¼ ΔT t ¼ ton½ � � exp � t � ton

τ

� 	
: ð18:26bÞ

ΔT(t)

ΔT(t)

ΔT(t)

ΔTmax

TSink

t/t

0 10 20

G(t)

t/t

G0
ΔTmax = θeff  • G

Fig. 18.6 Temperature rise and fall for heat generation volume versus input power time. Input power
G(t) is shown in insert with the duration of input power equal to ten thermal time-constants (t¼ 10τ).
The maximum temperature rise is ΔTmax ¼ θeffG0. The temperature rise and relaxation times tend to
saturate ( >99.3 %) for times (t > 5τ). The insert indicates input power level versus time
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The thermal rise and fall for each period can be generalized easily. The temper-
ature rise and fall during the Nth period is given by:

ΔT rise N � 1ð Þtp 	 t 	 N � 1ð Þtp þ ton

 � ¼ ΔT t ¼ N � 1ð Þtp


 �
þθeffG0 1� exp � t � N � 1ð Þtp

τ

� �� 
 ð18:27aÞ

and

ΔT fall N � 1ð Þtp þ ton 	 t 	 Ntp

 � ¼ ΔT t ¼ N � 1ð Þtp þ ton


 �
�exp � t � N � 1ð Þtp � ton

τ

� �
:

ð18:27bÞ

In Fig. 18.8 we show the temperature rises and falls for the first five power pulses
[with 50 % duty cycle pulses (ton¼ toff)]. In Fig. 18.8a we see that when ton
 τ, then
ΔTmax¼ θeffG0 is reached during the on-portion of each pulse;ΔTmax will relax fully
during the off-portion of the period. In Fig. 18.8b, we see that when ton � τ, then
ΔTmax ¼ θeffG0 is not reached during the on-portion of the first pulse and neither
does full thermal relaxation occur during the off-portion of the first pulse. However,
with each successive pulse, the temperature rise increases incrementally finally
reaching a value of ΔTmax ¼ θeffG0 when the number of pulses is much greater
than 5. In Fig. 18.8c, we see that when ton � τ, then the thermal time-constant τ for
the system prevents a rapid rise of the temperature during each pulse.15

G(t)

t

G0

…ton

toff

period = tp

Fig. 18.7 Periodic power
generation G(t). Duty cycle
is defined as the fraction of
time that the power pulse is
on: ton/tp

15Systems with large thermal time-constants are often referred to as systems with large thermal
inertia. Such systems, with large thermal inertia, have great difficulty responding quickly to short-
duration power pulses. This can be good or bad depending on the details of device application.
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t (a.u.)

t (a.u.)

t (a.u.)

ΔTmax = qeff  • G0

ΔTmax = qeff  • G0

ΔTmax = qeff  • G0

tperiod  = 10 t
duty cycle = 50%

tperiod  = t
duty cycle = 50%

tperiod  = 0.1 t
duty cycle = 50%

ΔTmax

Δ(Tt)

a

b

c

ΔT(t)

ΔT(t)

ΔT(t)

ΔT(t)

ΔT(t)

ΔT(t)

ΔT(t)

ΔT(t)

TSink

TSink

TSink

ΔTmax

Pulse
# 1

Pulse
# 2

Pulse
# 3

Pulse
# 4

Pulse
# 5

Pulse
# 1

Pulse
# 2

Pulse
# 3

Pulse
# 4

Pulse
# 5

Pulse
# 1

Pulse
# 2

Pulse
# 3

Pulse
# 4

Pulse
# 5

ΔTmax

Fig. 18.8 Thermal rises and falls for power pulsing with 50 % duty cycle (ton/tp ¼ 0.5). First five
pulses are shown. (a) Periodic power pulses with tP ¼ 10τ where τ is the thermal time-constant. (b)
Periodic power pulses with tP ¼ τ. (c) Periodic power pulses with tP ¼ 0.1τ
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Example Problem 7
Using the information found in Example Problem 6, assume that when the
room air temperature reaches 8 �C, an electric heater (power ¼ G0 ¼ 0.5 kW)
is brought into the room and turned on. How long will it take for the
temperature of the air in the room to recover from 8 �C to the normal level
of 23 �C?

Solution
From Example Problem 5 we have:

θeff ¼ 0:24
�
C=Wand τ ¼ 2:54h:

As soon as the electric heater is switched on (G0 ¼ 0.5 kW), the average
temperature of the air in the room will start to climb as given by:

ΔT rise ¼ ΔT t ¼ 0½ � þ θeffG0 1� exp �t

τ

� 	h i
) t ¼ �τ ln 1� ΔT rise � ΔT0

θeffG

� �� 


¼ �2:54h ln 1� 15OC

0:24oC=Wð Þ 0:5� 103W
� � !" #

¼ 0:34h ¼ 20:4min:

Therefore, it will take approximately 20 min (after the 0.5 KW electric heater is
switched on) before the average temperature of the room increases from 8 to 23 �C.

Example Problem 8
A silicon power (50 W) transistor is used in a certain device application.
Assuming that the effective thermal resistance for the power transistor is θeff
¼ 10 �C/W and that the thermal time-constant is τ ¼ 100 μs, determine the
temperature rise for the power transistor when it delivers a power of 50 W for:

(a) 1 μs,
(b) 10 μs,
(c) 100 μs,
(d) 1,000 μs.

Solution
The temperature rise for the power transistor is given by:

(continued)
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ΔTnse ¼ΔT t ¼ 0½ � þ θeffG0 1� exp �t

τ

� 	h i
¼ 0þ 10oC=Wð Þ 50Wð Þ 1� exp � t

100μs

� �� 

¼ 500oC 1� exp � t

100μs

� �� 

:

(a)

ΔT rise ¼ 500oC 1� exp � 1μs
100μs

� �� 

¼ 5oC

(b)

ΔT rise ¼ 500oC 1� exp � 10μs
100μs

� �� 

¼ 48oC

(c)

ΔT rise ¼ 500oC 1� exp � 100μs
100μs

� �� 

¼ 316oC

(d)

ΔTnse ¼ 500oC 1� exp � 1, 000μs
100μs

� �� �
¼ 499:98oC

6 Convection Heat Transfer

Thus far in this chapter, the primary heat transfer mechanism discussed has been
conduction (solid to solid) heat transfer. The importance of convection (solid to
fluid) heat transfer was alluded to in Example Problem 4 when we noted that the
thermal resistance (from package surface to the ambient air) could be reduced by air
flow. Now we would like to make the convection heat transfer process a little more
quantitative.

Shown in Fig. 18.9 is an example of convection heat transfer process using forced
fluid (air or liquid) flow over the surface of the device. As the molecules in the fluid
come in contact with the surface of the device, heat transfer will occur. If the
molecules in the fluid leave the surface of the device with a higher mean speed,
then energy is being transferred from the surface of the device to the fluid. In thermal
equilibrium, the constant heat generation rate G0 must be equal to the heat loss rate
from the device’s surface.
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Let us represent the heat transfer rate at a unit area of the surface using a transfer
coefficient h. In terms of the heat transfer coefficient h, we will write an integral form
of Newton’s law for cooling rate16:

G0 ¼
R
~JH xð Þ � d~ASurface ¼

R
h xð Þ T xð ÞSurface � T1


 �
dASurface

¼ ASurface

R
h xð Þ T xð ÞSurface � T1


 �
dASurfaceR

dASurface

¼ ASurface h xð Þ
T xð ÞSurface � T1
� �

:

ð18:28Þ

If the temperature of the device’s surface is approximately uniform/constant, then
Eq. (18.28) reduces to:

G0 ¼ ASurface h xð Þ T xð ÞSurface � T1

 �� �

¼ ASurface h xð Þh i TSurface � T1½ �
¼ ASurfaceheff TSurface � T1½ �

¼ 1
θeff

TSurface � T1½ �:

ð18:29Þ

Therefore, we see from Eq. (18.29) that the effective thermal resistance from

device surface to fluid can be written as:

G
TGen

Fig. 18.9 Convection heat transfer is enhanced by forced fluid (air or liquid) flow. The fluid, as it
flows over the surface of the hot device, will absorb heat (assuming that TSurface [ T?). Since the local
temperature of the fluid close to the surface of the hot device will rise, T? represents the steady-state
temperature of the fluid some relatively large distance away from the surface of the hot device

16Newton’s law for cooling states that the rate of heat loss from a body is proportional to the
temperature difference between the body and its surroundings:

d HeatLos\ fromBodyð Þ
dt / TBody � TAmbient


 �
. However, for convection cooling in general, deviations

from this simple linear dependence can be observed.
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θeffð ÞSurface�to�Fluid ¼
1

heffð ÞSurface�to�Fluid � ASurface
: ð18:30Þ

Example Problem 9
A metal plate of surface area 10 cm2 is being heated by resistive or inductive
methods. It is dissipating a constant 40 W of power to the ambient air.

(a) If the steady-state surface temperature rise of the metal plate is 250 �C,
what is the average/effective heat transfer coefficient for metal surface to the
ambient air?

(b) Assuming that a forced air flow increases the heat transfer coefficient by
a factor of 5, what would be the new steady-state metal surface temperature
rise?

Solution

(a) Equation (18.29) gives:

G0 ¼ ASurface h xð Þh i TSurface � T1½ �
¼ ASurfaceheff TSurface � T1½ �
¼ 40W:

Therefore:

heff ¼ hh i ¼ 40W
ASurface TSurface � T1½ �

¼ 40W
100cm2 250oC½ � ¼ 0:0016

W
�Ccm2

:

(b) With forced air flow the new heat transfer coefficient (heff)new increases by
a factor of 5. This will reduce the metal plate temperature rise to:

TSurface � T1½ � ¼ 40W
ASurface � heffð ÞNew

¼ 40W

100cm2 5 � 0:0016ð Þ W
�C-cm2

� 

¼ 50oC:
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7 Radiation Heat Transfer

Heat transfer can be achieved through conduction (solid to solid heat transfer as
illustrated in Example Problems 2 and 3) or by convection (solid to fluid heat transfer
as illustrated in Example Problems 4 and 9). There is, however, another method of
heat transfer that should be discussed—radiation (solid to ambient heat transfer via
electromagnetic radiation).

A body at temperature T will emit electromagnetic radiation, and the power P of
the emission (energy radiated per unit time) is given by the Stefan–Boltzmann Law:

Pradiation ¼ emisσStefAT
4, ð18:31Þ

where emis is the emissivity for the surface of area A which bounds the volume of
material at temperature T (in Kelvin). σStep is Stefan’s constant and has a value of
5.67 � 10-8 W/(m2 K4). We will show in Example Problem 10 that (except for very
high temperatures) the radiation heat losses are often small compared to conduction/
convection heat transfer. The emissivity of several material surfaces is given in
Table 18.3.

Example Problem 10
Reconsider Example Problem 2—except this time, consider both the conduc-
tive heat transfer and the radiation heat transfer from the metal plate. Assume
that the metal plate is initially at 25 �C before input power is applied to the
metal plate.

Solution
In Example Problem 2, the steady-state conduction power from the metal plate
was given by:

Pconduction ¼ ΔT
θ

¼ κA0

So

� �
ΔT:

Thus, the conduction power per unit area becomes:

(continued)

Table 18.3 Material surface
emissivity

Material Emissivity:emis

Polished metals 0.01–0.10

Oxidized metals 0.10–0.20

Heavily oxidized metals 0.20–0.50

Water 0.60–0.70

Silica 0.80–0.90

Paint: flat black 0.85–0.90

Dark red brick 0.90–0.95

Coal 0.95–0.99
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Pconduction

A0
¼ κ

So

� �
ΔT ¼

12
mW

�C� cm
1cm

0B@
1CA 167� 25ð ÞoC:

¼ 1:7
W
cm2

Assume that the total surface area A of this thin plate is A� 2Ao and that its
emissivity is emis ¼ 0.1, then Eq. (18.31) gives:

Pradiation

Ao
¼ 2emisσStefT4

¼ 2 0:1ð Þ 5:67� 10�8 W

m2K4

� �
1m

100cm

� �2

25þ 167þ 273ð ÞK½ �4

¼ 0:053
W
cm2

:

Note that the radiation heat transfer (per unit area) from the metal plate is
small compared to the conduction heat transfer (per unit area) from the metal
plate for this problem. Note also that the effective thermal resistance θeff
(described in Sect. 18.3) was experimentally determined by measuring the
temperature rise for a fixed power dissipation—therefore θeff (since it is a
measured quantity) comprehends the impact of all three heat transfer mecha-
nisms: conduction, convection, and radiation.

8 Entropy Changes Associated with Heat Transfer

Before leaving this chapter we must, at the very least, mention entropy changes
associated with heat transfer. Even though we have not used entropy changes
explicitly, they are implicit in everything that we have done. Recall from Chap. 3
the stated Second Law of Thermodynamics: entropy (disorder) of isolated systems
will tend to increase with time—thus entropy tends to act like a clock which
distinguishes past, present and future. The change in entropy ΔS of a system is
given by:

ΔS ¼
Z T2

T1

δ Heatð Þ
T

, ð18:32Þ

where the temperature T must be expressed in Kelvin. δ(Heat) is not an exact
differential which means that before one can integrate—details must be given
concerning the heat transfer process.
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In Example Problem 1, when we brought the blocks of aluminum and copper into
thermal contact at time t¼ 0, the block of copper immediately/spontaneously started
to transfer heat from the hotter copper block to the cooler aluminum block. What was
the driving force for this heat flow/transfer to occur? The First Law of Thermody-
namics (conservation of energy) cannot be the driving force for the energy transfer
because the total energy of the system remains constant throughout the transfer of
energy from the copper block to the aluminum block. We said that the transfer of
energy/heat was due to Fourier’s Law (heat flow due to a thermal gradient) which is
correct, but Fourier’s Law seems to be only a consequence of something more
fundamental—an alternative statement of the Second Law of Thermodynamics:
spontaneous changes will occur within an isolated system with time in a direction
that tends to increase/maximize entropy. The Second Law can be considered the
driving force that caused the heat to spontaneously start flowing from the hot block
of copper to the cooler block of aluminum when the two materials were brought into
thermal contact. In Example Problem 11 we will show that the entropy of the system
increases when heat flows from the hotter Cu block to the cooler Al block; and, this
is the ultimate driving force for spontaneous heat flow. The maximum entropy
increase for this system (final state of system) will occur when the temperature of
the two blocks of metal reach the same equilibrium temperature.

Example Problem 11
Determine the change in entropy, for the process described in Example
Problem 1, where the block of aluminum (initially at 25 �C) and the block
of copper (initially at 500 �C) were brought together and reached their final
state of thermal equilibrium at 168.6 �C.

Solution
The change in the entropy for the block of aluminum (from initial state to final
equilibrium state) is given by:

ΔSAl ¼
ZTeq

298K

cAlMAldT
T

¼ cAlMAl ln
Teq

298K

� �
,

and for the block of copper,

ΔSCu ¼
ZTeq

773K

cCuMCudT
T

¼ cCuMCu ln
Teq

773K

� �
:

(continued)
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Since the equilibrium temperature was determined in Example Problem 1 to
be Teq ¼ 168.6 �C¼ 441.6 K, then the entropy change for the aluminum block
is:

ΔSAl ¼ cAlMAl ln
Teq

298K

� �
¼ 0:9� 103J= kgKð Þ
 �

1kg½ � ln 441:6K
298K

� �
¼ 354J=K

The entropy change for the copper block is:

ΔSCu ¼ cCuMCu ln
441:6K
298K

� �
¼ 0:39� 103J= kgKð Þ
 �

1kg½ � ln 441:6K
773K

� �
¼�219J=K:

The net entropy change for the system is given by:

ΔS ¼ΔSAl þ ΔSCu

¼þ354J=Kþ �219J=Kð Þ
¼ þ135J=K:

Therefore, we conclude that the driving force for spontaneous heat flow
(from the hot copper block to the cooler aluminum block) was due to the
increase in entropy (+135 J/K) for the system.

We should note that the Second Law prohibits heat from spontaneously flowing
from a cooler block of aluminum to the hotter block of Cu (see Problem 9 at the end
of this chapter) because this would represent a decrease in entropy for the system.
The Second Law prevents spontaneous changes which would lead to a decrease in
entropy of the universe. Since entropy (disorder) of the universe must always
increase—then how can we explain the creation of highly-ordered/highly-structured
devices? How can these devices be built without violating the Second Law?

We know that with the addition of work, local order can be easily achieved. With
work, impressive highly-ordered structures/devices can be created: cars, buildings,
cities, ICs, computers, etc. Creation of local order is possible (reduction in local
entropy) as long as the net entropy of the universe increases. For example, a common
way of bringing about an increase in local order (decrease in local entropy) is simply
to build a device/structure. This building effort, however, requires work. In the
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process of doing work, food must be consumed and burned by our bodies. If we use
machines to build the devices/structures, then fuels must be consumed and burned by
the machines. Since the energy content in food/fuel is normally highly concentrated,
food and fuel represent states with relatively low entropy. However, as the food/fuel
is burned, an enormous increase in entropy (increase in chaos) occurs. Thus, a local
decrease in entropy is possible (evidenced by the building of highly-ordered devices/
structures). This is permitted by the Second Law as long as there is a net increase in
entropy somewhere else in the universe. Also, as we recall from Chap. 8, once these
highly-ordered devices/ structures are built, they are generally metastable and will
start to degrade with time—also because of the Second Law.

In summary, building highly-ordered/highly-structured devices represents a
decrease in local entropy. Such highly-ordered structures can be accomplished
with work and/or with heat transfer. However, the entropy of the universe must
increase somewhere else when we create such devices. As we discussed in Chap. 8,
these newly created highly-ordered/highly-structured devices tend to be metastable
and will generally degrade with time—also as a consequence of the Second Law.

Problems

1. For the horizontal heat flow configuration shown, where ki is the thermal
conductivity and Si is the thickness for each material with cross-sectional area A,

Cross-Section Area: A

S1 S2 S3

k2 k3k1

show that the thermal resistance h for the three materials is given by:

θ ¼ 1
A

X3
i¼1

Si
ki
:

2. For the horizontal heat flow configuration shown, where ki is the thermal
conductivity and Ai is the cross-sectional area for each material with thickness S,
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k1

Thickness:S

A3

k2

k3

A2 A1

Cross-Section Areas: Ai

show that the thermal resistance θ for the three materials is given by:

θ ¼ SP3
i¼1

kiAi

:

3. For the embedded metal plate shown, 10 W of power is being generated in the
metal plate and dissipated in equilibrium through the thermal resistances shown
with values: θ1 ¼ θ2 ¼ 5 �C/W and θ3 ¼ θ4 ¼ θ5 ¼ θ6 ¼ 40 �C/W.

(a) What is the total effective thermal resistance for all of these thermal resistors
in parallel?

(b) In steady state, what is the temperature rise for the metal plate above the
ambient temperature?

(c) Of the total power (10 W) being dissipated by the metal plate, how much of
the power dissipation is going out the top and bottom of the metal plate?
How much of the power dissipation is going out the sides of the metal plate?

TAmb

TGenTAmb

TAmb

TAmb

TAmb

TAmb

1

2

3

4

5

6

Answers: (a) 2.0 �C/W (b) 20 �C (c) Top plus Bottom: 8.0 W, Sides: 2.0 W

4. The thermal resistance (from silicon-chip junction to ambient air) for an IC
package is θJA ¼ 33 �C/W in still air. In moving air (air flow of 1 m/s) the
thermal resistance reduces to 27 �C/W. Suppose that a silicon chip is placed in
this IC package and that the chip dissipates a constant power of 2 W.
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(a) Calculate the equilibrium chip junction-temperature when the packaged chip
is placed in still air at 25 �C.

(b) Calculate the equilibrium chip junction-temperature when the packaged chip
is placed in moving air (1 m/s) at 25 �C.

Answers: (a) 91 �C (b) 79 �C

5. On a very cold winter day (outside air temperature of �10 �C), a constant input
power of 1 kW is required from an electric heater to keep the room temperature
at 23 �C. Assuming that the exterior wall has a large plate glass window such
that most of the heat in the room is lost through this exterior wall: (a) what is the
effective thermal resistance of the exterior wall; and, (b) if the cost of the electric
power is $0.1/(kW h), what is the cost to heat such a room for 1 month (30 days)
under this extreme condition?

Answers: (a) 0.033 �C/W (b) $72

6. For the silicon chip described in Problem 5 (in still air), what is the effective heat
capacity of the chip and package if the chip comes into thermal equilibrium
approximately 60 s after a constant power is applied? (Assume that thermal
equilibrium occurs after approximately 5 thermal time-constants.)

Answer: 0.36 (W s)/oC

7. If the electric power is suddenly lost to the room described in Problem 5, how
long would it take for the room temperature to drop from 23 to 0 �C? Assume
that the room (8 m � 8 m � 3 m) is relatively air tight with a heat capacity of
3.84 � 104 (W s)/oC and that the room is located at sea level.

Answer: t ¼ 0.42 h

8. Quench hardening is a metallurgical process whereby a piece of metal is raised
to a high temperature and then suddenly quenched—rapidly lowering the
temperature of the piece of metal. Suppose that a 10 kg piece of steel at
900 �C is suddenly dropped in a thermally insulated vat with 100 kg of water
at 25 �C. What will be the equilibrium temperature of the steel and water?
Assume that the specific heat for the steel is 0.49 kJ/(oC kg) and for the water is
4.19 kJ/(oC kg).

Answer: 35 �C

9. Using the First and Second Laws of Thermodynamics, show that heat cannot
spontaneously flow from a cooler object to a hotter object. [Hint bring together
two identical blocks (but at different temperatures) and calculate the entropy
change that would occur if heat flows from the cooler to the hotter block. Is the
entropy change positive or negative?]

10. Show that when you bring together two identical blocks, except one has an
initial temperature of T1 and the other has an initial temperature of T2, the final
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equilibrium temperature will be Tequilibrium ¼ (T1 + T2)/2. [Hint show that this
equilibrium temperature produces the maximum entropy change for the system.]

11. The solar constant S ¼ 1.4 kW/m2 represents the average specific power density
delivered to the earth17 by the sun. Assuming that the distance from the earth to
the sun is 1.5� 1011 m, the radius of the sun is 6.96� 108 m, and the emissivity
of the sun is emis ¼ 1, use the Stefan-Boltzmann equation to calculate the
average temperature of the sun.

Answer: TSun ¼ 5,820 K (or approximately 6,000 K)
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Chapter 19
Sampling Plans and Confidence Intervals

Before purchasing a large number of devices, a customer will likely ask the supplier
about the defect level for the product being offered. The customer’s reliability
inquiry is often expressed as: what is the defect level for the population of such
devices in terms of number of defective devices per hundred, number of defective
devices per thousand, number of defective devices per million (dpm), etc.? To
determine the fraction defective, a sample of the devices is randomly selected from
the population and this sample is tested/stressed to determine the fraction defective.
After the fraction defective is determined for the sample, then it is only natural to
ask: based on the sample size used, what is the confidence interval for the population
fraction defective? To answer this critically important question, we must understand
the basics of sampling theory.

1 Poisson Distribution

The statistical distributions discussed in Chaps. 6 and 7 (normal, lognormal,
Weibull) are continuous distributions and are well suited for time-to-failure statistics.
This is because time-to-failure will take on a continuous spectrum of time- to-failure
values. However, in sampling a population, in order to determine the number of
defective devices x, one will obtain discrete values for x (such as 0, or 1, or 2, etc.).
This is because we will view defects as digital—a device is either defective or it is
not (it either passes or fails, it is either good or bad, etc.). There will be no
consideration given here as to labeling a device as being partially defective. The
Poisson distribution is a discrete distribution that is often used in physics, engineer-
ing, and manufacturing. It is used to describe the probability of occurrence for
discrete random events/processes. Random processes refer to physical events
which are controlled purely by chance. Examples of discrete random events include:
the number of disintegrations observed in given time intervals for a radioactive
material; the number visible stars observed in a small area of the sky as one pans the
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sky; the number of telephone calls received in given time intervals; the number of
defects observed on a silicon wafer (in the field of view of a microscope) as the stage
moves; and the number of manufacturing defects observed to come off the assembly
line in given time intervals. More reading on the subject of Poisson processes can be
found in the bibliography. In this textbook, we only state the needed results a priori.
Our attention will be focused on how to use discrete distributions for defect-level
determination and how to calculate the appropriate sample size and the confidence
levels/intervals associated with the sampling measurement.

1.1 Poisson Probability for Finding Defective Devices

If one draws a random sample of size SS from a large population of devices that has a
fraction defective F, then the probability of finding x defective devices in the sample
is given by the Poisson probability p(x; SS, F):

p x; SS,Fð Þ ¼ SS � Fð Þxexp �SS � F½ �
x!

: ð19:1Þ

The probability of getting zero defective devices in the sample size SS is given
by,

p x ¼ 0; SS,Fð Þ ¼ SS � Fð Þ0exp �SS � F½ �
0!¼ exp �SS � F½ �

: ð19:2Þ

If p(x ¼ 0; SS, F) is the Poisson probability of getting zero defective units in SS,
then the probability P of getting something other than zero defects in SS is p(x 6¼ 0;
SS, F):

P ¼ p x 6¼ 0; SS;Fð Þ ¼ 1� p x ¼ 0; SS;Fð Þ
¼ 1� exp �SS � F½ � ð19:3Þ

P is usually expressed as a fraction/decimal; but, when expressed as a percentage,
it is often referred to as a confidence level.

Example Problem 1
In the integrated circuit (IC) industry, yield (fraction of good electrical chips on
a wafer) is a very important manufacturing parameter. Defects introduced
during manufacturing can have an adverse impact on yield as illustrated in
this figure.

(continued)
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Good
Chip

Defect
On Chip

Silicon Wafer

N = Number of Chips on Wafer

n = Number of Randomly Distributed Defects

Multiple
Defects
On Chip

N ¼ Number of Chips on Wafer
n ¼ Number of Randomly Distributed Defects
Yield is simply the probability of testing a single chip (SS ¼ 1) on a wafer

(having a total of N such chips and with n randomly distributed defects) and
finding that the chip has zero defects (x ¼ 0).

Using Eq. (19.2),

1. find an expression for chip yield in terms of n and N, and
2. find an alternative expression for yield in terms of defect density dd and the

area of a single chip Achip.

Solution

1. If we assume that the wafer contains a total of n randomly distributed
defects across the top surface of wafer, then from Eq. (19.2) we obtain:

yield ¼ p x ¼ 0; SS ¼ 1;F ffi n

N

� �
¼ exp �n

N

� � :

2. IC fabrication centers (Fabs) like to express the yield in terms of a defect
density dd over the top surface area of the wafer:

dd ¼ n

Area of Wafer
ffi n

N � Achip
:

Therefore, we can write:

(continued)
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yield¼ exp �n

N

� �
¼ exp �dd � Achip

� � :
We should emphasize that the previous equation for yield assumes that the

defects are randomly located across the surface of the wafer. If the defects tend
to cluster into certain regions of the wafer (e.g., an unusually high number of
the defects can sometimes occur near the edge of the wafer) then this yield
equation can be too pessimistic in its prediction.

1.2 Poisson Sample Size Requirements

Let us suppose that we test/stress a sample size SS of units, randomly drawn from a
large population of such units, to determine the fraction of defective units F in the
population. During the testing/stressing of SS we find zero defects. The question that
we want to address here is: how large should SS be to ensure that the fraction
defective F for the population is less than or equal to some value and at what
confidence level? Using Eq. (19.3) we obtain

SS ¼ 1
F
ln

1
1� P

� �
: ð19:4Þ

Thus, if our hypothesis is that the fraction defective for a group of devices/units is
F, then at the P confidence level Eq. (19.4) gives the required sample size SS to test
the hypothesis. We can use Eq. (19.4) for the sample size SS determination, only if
we get zero failures during the testing/stressing of SS.

Example Problem 2
Assuming that the defects can be described by a Poisson distribution, what
should be the minimum sample size SS (with accepting the hypothesis for
F only if zero defects are found in the sample) to ensure that the population
fraction defective is F � 0.05 at the 95 % confidence level (P ¼ 0.95)?

Solution
Using Eq. (19.4) we obtain,

(continued)
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SS¼ 1
F
ln

1
1� P

� �

¼ 1
0:05

ln
1

1� 0:95

� �
¼ 59:9

:

Therefore, if we select a random sample size of SS ¼ 60 units, and test/
stress them and find zero defects, then we can state (at the 95 % confidence
level CL using the Poisson distribution) that the fraction defective for the
population of such devices is F � 0.05.

Suppose that we would like to have the flexibility of accepting the hypothesis for
F based on something other than finding zero defective units. Suppose that we would
like to draw a larger sample size SS but accept the hypothesis for F based on either
0 or 1. The probability of getting something other than 0 or 1 is given by,

P ¼ 1� p x ¼ 0; SS;Fð Þ � p x ¼ 1; SS;Fð Þ
¼ 1� exp �SS � F½ � � SS � Fð Þexp �SS � F½ � : ð19:5Þ

Equation (19.5) can be used to solve for SS and we obtain,

SS ¼ 1
F

� �
ln

1þ SS � F
1� P

� 	
: ð19:6Þ

Equation (19.6) can be used to determine the required sample size SS for testing
the hypothesis for F, at the P confidence level, only if we accept on observations of
0 or 1 defective devices when testing/stressing the sample size SS. Equation (19.6)—
which is a transcendental equation—can be solved self-consistently as illustrated in
Table 19.1.

To find the self-consistent solution to the equation shown at the top of Table 19.1,
the left-hand column is iterated while the right-hand column is calculated. One
simply finds the iteration at which the left-hand columnar value is approximately
equal to the right-hand columnar value. In this example, the self-consistent solution
for SS is between 95 and 96. If a more precise value is required, the interval between
95 and 96 can be subdivided. This process of subdivision can be continued until any
desired level of accuracy is achieved by the self-consistent method of solution.
However, in sample size SS determination, the SS value is nearly always rounded
up; thus, a high accuracy self-consistent solution is usually not required.

In summary, if we select a random sample of size SS ¼ 96 and accept only on
finding either 0 or 1 defective units, then we can be 95 % confident that the defective
fraction for the population of such devices is F � 0.05. By extending the approach
used in Eq. (19.5) to develop Eq. (19.6), the SS requirement for accepting on values
other than 0 or 1 can also be computed.

1 Poisson Distribution 423



2 Binomial Distribution

The binomial distribution is also a discrete distribution and it is a frequently used
statistical distribution in manufacturing and engineering. It is a well-suited distribu-
tion for defect statistics because it assumes that the outcome of a trial/measurement
can have only one of the two outcomes: a device is either defective or it is not. It
further assumes that the probability p of finding a defective device is the same for
each trial such that the probability of not finding a defect is simply 1 - p.

2.1 Binomial Probability for Finding Defective Devices

If one draws a sample size SS of devices/units from a population that has a fraction
defective F, then the probability of finding x defective devices in the sample is given
by the binomial probability b(x; SS, F):

b x; SS,Fð Þ ¼ SS!
x! SS� xð Þ! Fð Þx 1� Fð ÞSS�x: ð19:7Þ

The probability of getting zero defects in the sample size SS becomes:

Table 19.1 Self-consistent
solution for poisson sampling
(accepting on either 0 or 1)

SS ¼ 1
F

� �
ln

1þ SS � F
1� P

� 	

SS

1
F

� �
ln

1þ SS � F
1� P

� 	
0 59.9

1 60.9

2 61.8

3 62.7

4 63.6

5 64.4

. .

. .

. .

90 94.0

91 94.2

92 94.4

93 94.5

94 94.7

95 94.9

96 95.1

97 95.2

98 95.4

99 95.6

100 95.7
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b 0; SS,Fð Þ ¼ SS!
0! SS� 0ð Þ! Fð Þ0 1� Fð ÞSS�0

¼ 1� Fð ÞSS
: ð19:8Þ

If b(x¼ 0; SS, F) is the binomial probability of getting zero defects in SS, then the
probability P of getting something other than zero defects in SS is b(x 6¼ 0; SS, F):

P ¼ b x 6¼ 0; SS,Fð Þ ¼ 1� b x ¼ 0; SS,Fð Þ
¼ 1� 1� Fð ÞSS : ð19:9Þ

2.2 Binomial Sample Size Requirements

Let us suppose that we test/stress a sample size SS (of units randomly drawn from the
population of such units) to determine the fraction F of defective units in the
population. During the testing/stressing of SS we find zero defects. The question
that we want to address is: how large should SS be to ensure that the fraction
F defective for the population is less than or equal to a certain value and at what
confidence level?

Using Eq. (19.6) we obtain,

SS ¼ ln 1� Pð Þ
ln 1� Fð Þ : ð19:10Þ

Thus, if our hypothesis is that the defective fraction for the population of devices/
units is F, then at the P confidence level, Eq. (19.10) gives the required sample size
SS to test the hypothesis. We can use Eq. (19.10) for the SS determination to test our
hypothesis concerning F, only if we get zero failures during the testing/ stressing
of SS.

Example Problem 3
Let us reconsider Example Problem 2—except this time we will use the
binomial distribution rather than the Poisson distribution.

Solution
Using Eq. (19.10) one obtains,

(continued)
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SS¼ ln 1� Pð Þ
ln 1� Fð Þ

¼ ln 1� 0:95ð Þ
ln 1� 0:05ð Þ

¼ 58:4

Therefore, if we select a random sample size SS ¼ 59 units1 and test/stress
them and find zero defects, then we can state (at the 95 % confidence level CL
using the binomial distribution) that the population fraction defective is F �
0.05. Note that when we compare the results in Example Problems 2 and 3, we
see that the Poisson and binomial distributions give very similar results
(sample size of 60 vs. 59, respectively).

Suppose that we would like to have the flexibility of accepting the hypothesis for
F based on something other than finding 0 defective units. Accepting on something
other than 0 will require us to draw a larger sample size SS. The probability of
finding something other than 0 or 1 is given by,

P¼ 1� b x ¼ 0;SS;Fð Þ � b x ¼ 1; SS;Fð Þ
¼ 1� 1� Fð ÞSS � SS � Fð Þ 1� Fð ÞSS�1 : ð19:11Þ

Equation (19.11) can be used to solve for SS and we obtain:

SS ¼
ln 1� Pð Þ � ln 1þ SS�1ð ÞF

1�F

h i
ln 1� Fð Þ : ð19:12Þ

Equation (19.12) can be used to determine the required sample size SS for testing
the hypothesis for F, at the P-confidence level, only if we accept on observations of
0 or 1 defective units when testing/stressing the sample size SS. At the 95 % CL (P¼
0.95) and with the hypothesis of F� 0.05, the self-consistent solution of Eq. (19.12)
is shown in Table 19.2 and it gives a sample size SS ¼ 93. [Note that this binomial
distribution value SS ¼ 93 is very close, but slightly lower, than the value SS ¼
96 found using the Poisson distribution.]

1Generally, in sampling theory, we round up the sample size requirement.
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3 Chi Square Distribution

Drawing a random sample of size SS from a population containing a fraction
F defective will not always produce the expected number of fails SS � F. In fact, if
we do a series of k trials and keep track of the observed value Oi versus the expected
value Ei, and compute the statistic χ2 (read Chi square):

χ2 ¼
Xk
i¼1

Oi � Eið Þ2
Ei

: ð19:13Þ

then this sampling distribution for the statistic χ2 will follow a Chi square
distribution.

3.1 Chi Square Confidence Intervals

Using the Chi square distribution, we can define a confidence interval for the statistic
χ2 as:

Table 19.2 Self-consistent
solution for binomial
sampling (accepting on either
0 or 1)

SS ¼
ln 1� Pð Þ � ln 1þ SS�1ð ÞF

1�F

h i
ln 1� Fð Þ

SS

ln 1� Pð Þ � ln 1þ SS�1ð ÞF
1�F

h i
ln 1� Fð Þ

0 58.4

1 59.4

2 60.4

3 61.3

4 62.1

5 63.0

. .

. .

. .

90 92.5

91 92.6

92 92.8

93 93.0

94 93.2

95 93.3
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χ2 1� P; vð Þ � χ2 � χ2 P; vð Þ: ð19:14Þ

where v (¼k - 1) represents the number of degrees of freedom (the number of times
that the population parameters must be estimated to carry out the calculation) and
P is a confidence level. In statistics, the right-hand side of Eq. (19.14) is generally
referred to as the upper end of the specified range while the left-hand side is
generally referred to as the lower end. The values for χ2(P, v) and χ2(1 - P, v) can
be found in standard statistical textbooks or simply can be determined using standard
Excel functions. In Excel, χ2(P, v)¼ CHIINV(1 -P, v) and χ2(1 - P, v)¼ CHIINV(P, v).
The χ2(P, v) values are also shown in Appendix H.

Let us now consider the case where we draw a single sample size SS from a
large population of devices with a defective fraction F. We would expect to get
SS � F defects but we observe SS � Fs from the sampling. Thus, using Eq. (19.13) and
(19.14), from this single sample we have:

χ2 1� P; vð Þ � SS � Fs � SS � Fð Þ2
SS � F � χ2 P; vð Þ: ð19:15Þ

Equation (19.11) can be rewritten as,

χ2 1� P; vð Þ
x=SSð Þ � F½ �2=F � SS � χ2 P; vð Þ

x=SSð Þ � F½ �2=F , ð19:16Þ

where we have used the fact that Fs ¼ x/SS and where x is the number of defective
devices observed in the sample size SS. For dichotomous data (devices are either
defective or non-defective), then the appropriate number of degrees of freedom is
v ¼ k - 1 ¼ 2 - 1 ¼ 1. Thus, using the upper end of the specified range in the last
equation to determine the sample size SS, which should be randomly drawn from the
population, to be P confident that the fraction defective in population is less than or
equal to F:

SS ¼ χ2 P; v ¼ 1ð Þ
x=SSð Þ � F½ �2=F : ð19:17Þ

Example Problem 4
Let us reconsider Example Problem 2—except this time we will use the Chi
square distribution rather than the Poisson distribution.

Solution
Using Eq. (19.17) (along with Appendix H) and accepting on finding x ¼
0 failures in the sample, the needed sample size SS is:

(continued)
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SS ¼ χ2 P; v ¼ 1ð Þ
x=SSð Þ � F½ �2=F

¼ χ2 0:95; v ¼ 1ð Þ
F

¼ 3:84
0:05

¼ 77:

Therefore, using this particular Chi square distribution approach, if we
select a random sample size of SS ¼ 77 units and test/stress them and find
zero defects, then we can state at the 95 % confidence level CL (using the Chi
square distribution) that the fraction defective is F � 0.05. [Note that the
Poisson and binomial distributions, Example Problems 2 and 3, gave some-
what smaller sample requirements (SS ¼ 60 and 59, respectively).]

3.2 Chi Square Distribution for Defect Sampling

In order to get better agreement (in the required sample size) between the Chi square
distribution and the other two distributions (Poisson and binomial), and in order to
avoid the necessity of having to do the self-consistent solution for SS, a variation of
Eq. (19.16) is preferred:

χ2 1� P; v ¼ 2xð Þ½ �=2
F

� SS � χ2 P; v ¼ 2xþ 2ð Þ½ �=2
F

, ð19:18Þ

where x is the number of defective units found in the random sample size SS. Using
the upper end of the specified range, the sample size SS requirement (at the
P confidence level) becomes:

SS ¼ χ2 P; v ¼ 2xþ 2ð Þ½ �=2
F

: ð19:19Þ

By rearranging terms, another useful equation follows from Eq. (19.18):

χ2 1� P; v ¼ 2xð Þ½ �=2
SS

� F � χ2 P; v ¼ 2xþ 2ð Þ½ �=2
SS

: ð19:20Þ

Equation (19.20) can be used to determine, at the P confidence level, the
appropriate confidence interval for the population fraction defective F when a
sample size of SS is randomly drawn from a large population and tested/stressed.
When using Eq. (19.20), a special case arises when we draw a sample and get zero
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defects. The left-hand side of Eq. (19.20) is not defined when x¼ 0, because χ2(1 - P,
v ¼ 0) is not defined. In this case the left-hand side of Eq. (19.20) is set to zero.
Setting to zero is consistent with our observation—zero defects were found in the
sample size SS which means that it is at least possible that zero defects may actually
exist in the population. However, the possibility of the population having zero
defects is eliminated as soon as we obtain at least one defect in our sample size
SS—thus χ2(1 - P, v ¼ 2) is defined.

Example Problem 5
Using the Chi square distribution [Eq. (19.19)], find the required sample size
SS at the 95 % CL (P ¼ 0.95) which should be tested/stressed, to detect a
population defective fraction of F ¼ 0.05? Assume two conditions for
acceptance:

(a) accept only on finding zero defective units, and
(b) accept only on finding 1 (or zero) defective units.

Solution

(a) Using Eq. (19.19), along with Appendix H, one obtains for x ¼ 0:

SS¼ χ2 P; v ¼ 2xþ 2ð Þ½ �=2
F

¼ χ2 0:95; 2ð Þ½ �=2
0:05

:

¼ 5:99=2
0:05

¼ 60

(b) Using Eq. (19.19), along with Appendix H, one obtains for x ¼ 1:

SS¼ χ2 P; v ¼ 2xþ 2ð Þ½ �=2
F

¼ χ2 0:95; 4ð Þ½ �=2
0:05

:

¼ 9:49=2
0:05

¼ 95

From Example Problems 2, 3, and 5, we can see that Eq. (19.19) gives good
agreement with the Poisson and binomial distributions and requires no self- consis-
tent type solutions for sample size determination. Therefore, Eqs. (19.19) and
(19.20) will become the preferred equations to use for sampling in this textbook.
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Example Problem 6
A random sample of 100 devices was drawn from a large population of such
devices and tested/stressed. It was found that x ¼ 2 of the devices were
defective (or 2 % defective). What is the 90 % confidence-level interval for
the fraction F defective of the population?

Solution
Equation (19.20), along with Appendix H, gives the P confidence-level
interval for F:

χ2 1� P; v ¼ 2xð Þ½ �=2
SS

� F � χ2 P; v ¼ 2xþ 2ð Þ½ �=2
SS

) χ2 0:1; 4ð Þ½ �=2
100

� F � χ2 0:9; 6ð Þ½ �=2
100

) 0:0053 � F � 0:053

Although our sample size SS ¼ 100 units indicated a percentage defective
of 2 %, the 90 % confidence interval for the population defective is between
0.53 and 5.3 %.

4 Confidence Intervals for Characteristic Time-to-Failure
and Dispersion Parameters

In Chap. 7 we discussed continuous distributions (lognormal andWeibull) that could
be used to describe time-to-failure when a random sample was drawn from the
population of such devices and stressed to failure. However, there was no discussion
on the confidence intervals for such sampling. We will first discuss the confidence
intervals for the normal distribution because it will serve as a good introduction to
the confidence intervals associated with the lognormal and Weibull distributions.

4.1 Normal Distribution Confidence Intervals

Let us suppose that a single sample size SS is drawn randomly from a large
population of devices and that a device parameter is measured and recorded for
each device. From this single sample, the parameter is found to be normally
distributed (approximately) with a median value of (x50)s and standard deviation
(σ)s. The question that we want to address here is—what are the confidence intervals
for the population parameters x50 and r based on this single sample? The confidence
interval for x50 can be described using a Student’s t-distribtution:
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x50 ¼ x50ð Þs � t 1� α=2; SS� 1ð Þ � σsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS� 1

p ð19:21Þ

where (x50)s and σs are the sample median and standard deviation values; α is the
level of significance (0.1, 0.05, 0.01, etc.)2; P is the confidence level (P¼ 1� α); SS
is the sample size; σs ¼ (x50)s - (x16)s; and t stands for the student’s t-distribution. In
Excel, t(1 - α/2, SS - 1) ¼ TINV(α, SS - 1) and values are also shown in Appendix
G. The P confidence interval for the population standard deviation is given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

χ2 P; SS� 1ð Þ

s !
� σs � σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

χ2 1� P; SS� 1ð Þ

s !
� σs, ð19:22Þ

where: σs is the sample standard deviation; σ is the population standard deviation; SS
is the sample size; P is the confidence level; and χ2 represents the Chi square
distribution. In Excel, χ2(P, SS - 1) ¼ CHIINV(1 - P, SS - 1) and χ2(1 - P, SS - 1)
¼ CHIINV(P, SS - 1). The t-distribution and the Chi square distributions are used
because they may be used for both small and large sample sizes.

Example Problem 7
A sample size SS ¼ 30 was randomly drawn from a large population of
resistors. The sampling results for the resistors were: (x50)s ¼ 14.00 Ω with a
standard deviation of σs¼ 0.80Ω. Determine the 90 % confidence intervals for
the population median and standard deviation.

Solution
90 % CL ) P ¼ 1 – α ¼ 0.9 ) α ¼ 0.1. Equation (19.21), along with
Appendix G, gives:

x50 ¼ x50ð Þs � t 1� α=2; SS� 1ð Þ � σsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS� 1

p

¼ 14:00� t 0:95; 29ð Þ � 0:80ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30� 1

p
� �

Ω

¼ 14:00� 1:70 � 0:80ffiffiffiffiffi
29

p
� �

Ω

¼ 14:00� 0:25ð Þ Ω

:

Therefore, the 90 % confidence interval for the mean/median x50 of the
population is from 13.75 to 14.25 Ω.

(continued)

2The level of significance a is the probability that population x50 could be outside the range given by
Eq. (19.21). The confidence level P is the probability that the population x50 will be within the range
described by Eq. (19.21). Thus, P is the complement of a such that P + α ¼ 1.
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Equation (19.22), along with Appendix H, gives:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

χ2 P; SS� 1ð Þ
r� �

� σs � σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS
χ2 1� P; SS� 1ð Þ

r� �
� σs

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

30
χ2 0:9; 29ð Þ

s !
� 0:80 Ω � σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30

χ2 0:1; 29ð Þ

s !
� 0:80 Ω

)
ffiffiffiffiffiffiffiffi
30
391

r !
� 0:80 Ω � σ �

ffiffiffiffiffiffiffiffi
30
198

r !
� 0:80 Ω

) 0:70 Ω � σ � 0:98 Ω:

Therefore, the 90 % confidence interval for the standard deviation σ of the
population is from 0.70 to 0.98 Ω.

4.2 Lognormal Distribution Confidence Intervals

Remembering that the normal distribution becomes a lognormal distribution if the
logarithm of the values is used, then Eq. (19.17) can be used to write:

ln TF50½ � ¼ ln TF50ð Þs
� �� t 1� α=2; SS� 1ð Þ � σsffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS� 1
p : ð19:23Þ

Equation (19.23) can be rewritten as:

TF50 ¼ TF50ð Þsexp �t 1� α=2; SS� 1ð Þ � σsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS� 1

p
� 	

: ð19:24Þ

The confidence interval for the logarithmic standard deviation r takes the same
form as Eq. (19.22),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

χ2 P; SS� 1ð Þ

s !
� σs � σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

χ2 1� P; SS� 1ð Þ

s !
� σs: ð19:25Þ

Example Problem 8
A sample size of SS ¼ 25 devices was randomly drawn from a large popula-
tion of such devices and the sample was stressed at a constant level until the

(continued)

4 Confidence Intervals for Characteristic Time-to-Failure and Dispersion. . . 433



time-to-failure was recorded for each device. The time-to-failure results were
described well by a lognormal distribution with a median time-to- failure of
(t50)s ¼ 42 h with a logarithmic standard deviation of rs ¼ 0.50. Determine the
90 % confidence intervals for the population median time-to- failure t50 and the
population logarithmic standard deviation r.

Solution
90 % CL ) P ¼ 1 � α ¼ 0.9 ) α ¼ 0.1. Using Eq. (19.24), along with
Appendix G, for the population TF50, one obtains:

TF50 ¼ TF50ð Þsexp �t 1� α=2; SS� 1ð Þ � σsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS� 1

p
� 	

¼ 42 hð Þexp �t 0:95; 24ð Þ � 0:50ffiffiffiffiffi
24

p
� 	

¼ 42 hð Þexp �1:71 � 0:50ffiffiffiffiffi
24

p
� 	

) 35:3h � TF50 � 50:0 h:

Therefore, the 90 % confidence interval for the population TF50 is between
35.3 and 50.0 h. Using Eq. (19.25), along with Appendix H, for the population
σ, we obtain:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

χ2 P; SS� 1ð Þ
r� �

� σs � σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS
χ2 1� P; SS� 1ð Þ

r� �
� σs

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25
χ2 0:9; 24ð Þ

s !
� 0:50 � σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25

χ2 0:1; 24ð Þ

s !
� 0:50

)
ffiffiffiffiffiffiffiffi
25
332

r !
� 0:50 � σ �

ffiffiffiffiffiffiffiffi
25
157

r !
� 0:50

) 0:43 � σ � 0:63:

Therefore, the 90 % confidence interval for the population σ is between
0.43 and 0.63.
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4.3 Weibull Distribution Confidence Intervals

Starting with Eq. (19.20) and using characteristics of the Weibull distribution [TF50
¼ TF63/exp(0.367/β)] plus the approximate relation between the lognormal and
Weibull dispersion parameters [r ¼ 1.38/b], one can write:

TF63 ¼ TF63ð Þs
exp 0367

βs
1� βs

β

� �h i exp �t 1� α=2; SS� 1ð Þ � 1:38

βs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS� 1

p
� 	

: ð19:26Þ

From sampling theory we will use the relation:

βs
β
¼ σ

σs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

SS� 1

r
: ð19:27Þ

Using Eqs. (19.26) and (19.27) can now be rewritten as:

TF63 ¼ TF63ð Þsexp
0:367
βs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

SS� 1

r
� 1

 !" #
exp �t 1� α=2; SS� 1ð Þ � 1:38

βs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS� 1

p
� 	

:

ð19:28Þ

The first exponential term in Eq. (19.28) is normally small for βs > 1 and for
sample sizes SS of 20 or more. Thus, it is often ignored and we approximate the
confidence intervals for the Weibull distribution as:

TF63 ffi TF63ð Þsexp �t 1� α=2; SS� 1ð Þ � 1:38

βs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS� 1

p
� 	

ð19:29Þ

and

βsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

χ2 P; SS� 1ð Þ
r � β � βsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS
χ2 1� P; SS� 1ð Þ

r : ð19:30Þ

Example Problem 9
A device sample size SS¼ 25 was randomly drawn from a large population of
such devices and the sample was stressed at a constant level until the time-to-
failure was recorded for each device. The time-to-failure results for the sample
were well described by a Weibull distribution with a characteristic time-to-
failure of (t63)s ¼ 48 h with a Weibull slope of βs ¼ 2.76. Determine the 90 %

(continued)
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confidence interval for the population characteristic time-to-failure t63 and the
population Weibull slope β.

Solution
90 % CL ) P ¼ 1 � α ¼ 0.9 ) α ¼ 0.1. Equation (19.29), along with
Appendix G, gives:

TF63 ffi TF63ð Þsexp �t 1� α=2; SS� 1ð Þ � 1:38

βs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS� 1

p
� 	

¼ 48 hð Þexp �t 0:95; 24ð Þ � 1:38

2:76
ffiffiffiffiffi
24

p
� 	

¼ 48 hð Þexp �1:71 � 1:38

2:76
ffiffiffiffiffi
24

p
� 	

) 40:3 h � TF63 � 57:2 h:

Equation (19.30), along with Appendix H, gives:

βsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS

χ2 P; SS� 1ð Þ
r � β � βsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS
χ2 1� P; SS� 1ð Þ

r

) 2:76ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25

χ2 0:9; 24ð Þ
r � β � 2:76ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25
χ2 0:1; 24ð Þ

r

) 2:76ffiffiffiffiffiffiffiffiffi
25
33:2

r � β � 2:76ffiffiffiffiffiffiffiffiffi
25
15:7

r

) 3:18 � β � 2:19 :

Therefore, the 90 % confidence interval for the population characteristic
time-to-failure TF63 is between 40.3 and 57.2 h; the 90 % confidence interval
for the population Weibull slope β is between 2.19 and 3.18.

436 19 Sampling Plans and Confidence Intervals



4.4 Chi Square Distribution Confidence Intervals for Average
Failure Rates

In Chap. 8, Sec. 2, we found that, for small cumulative determines fraction F, the
average failure rate hλi for a population of devices could be estimated by:

λh i ffi F tð Þ
t

¼ SSð Þ � F tð Þ
SSð Þ � t ¼ #fai1ures

SSð Þ � t , ð19:31Þ

where F(t) is the cumulative fraction of failures observed during the time interval t;
SS is the sample size drawn from the population of such devices; and #failures
represents the cumulative number of failures observed during the time interval t.
Since most devices will be required to last 10 years or more, it is impractical to wait
the needed 10+ years to measure the actual average failure rate. Therefore, we have
to accelerate the observation time t.

In Chap. 10 we found that, by increasing the stress n (electric field, mechanical
stress, humidity, etc.) and/or increasing the temperature of operation, the stressing
time tStress could be accelerated:

t ¼ AFð Þ � tStress: ð19:32Þ

Combining Eqs. (19.31) and (19.32) we obtain3:

λh i ffi #fai1ures
SSð Þ � AF � tStressð Þ : ð19:33Þ

It is only natural to ask: how confident are we that Eq. (19.33) represents a good
estimate of the average failure rate for the entire population of such devices? For
example, several samplings using identical size SS might produce different results: a
first sampling might produce two failures; a second sampling might produce four
failures; and a third sampling might produce zero failures. Thus, if we are only
drawing a single sample size SS from the population, how confident are we that we
are capturing the true average failure rate for the entire population? Using
Eq. (19.20), plus the fact that #failures ¼ SS � F(t), we see that the number of
observed failures (at the P confidence level) can be expressed as:

χ2 1� P; v ¼ 2xð Þ� �
=2 � #failuresð ÞP�CL � χ2 P; v ¼ 2xþ 2ð Þ� �

=2, ð19:34Þ

3Note that this equation gives only single point estimation for the average failure rate over the
interval t. It does not tell us whether the failure rate is increasing, decreasing, or remains constant.
To determine this, several sequential periods of time would have to be studied.
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where x represents the number of failures actually observed in the sample size
SS. Therefore, the average failure rate hλi (at the P confidence level) for a population
of such devices, based on a single sample size SS, is given by:

χ2 1� P; v ¼ 2xð Þ½ �=2
SSð Þ � AF � tStressð Þ � λh i@P�CL � χ2 P; v ¼ 2xþ 2ð Þ½ �=2

SSð Þ � AF � tStressð Þ : ð19:35Þ

In summary, the usual practice for determining the average failure rate for a large
population of devices (operating under normal use conditions) is to draw a single
random sample (of size SS) and then place the sample under accelerated testing
conditions—being careful to record the number of failures x that actually occur
during the stressing time interval tStress. Then, using Eq. (19.35), one can determine
the upper end [right side of Eq. (19.35)] and the lower end [left side of Eq. (19.35)]
of the expected average failure rate for the entire population of such
devices (operating under normal use conditions and over the effective time interval
t ¼ AF � tStress).

Example Problem 10
In the qualification of ICs, it is often required to take a random sample of at
least 231 chips (from a large population of such chips) and then stress the chips
under high temperature operating lifetest (HTOL) conditions for 1,000 h,
sometimes at elevated voltages. Suppose that we obtain zero failures from
this HTOL testing. Assuming that the combined temperature and voltage
acceleration factor during HTOL was AF ¼ 100, there are several questions
that we would like to address.

1. The accelerated stress time was 1,000 h, but what would be the equivalent/
effective observation time under normal use conditions?

2. What would be the upper end estimate for the average failure rate (at the
90 % confidence level) for the entire population of such chips when they are
operated under normal use conditions?

3. At the 90 % confidence level, what is the upper end for the faction of the
chips that would be expected to fail after 10 years of normal service?

4. If chip reliability R(t) is defined as R(t)¼ 1 - F(t), then what is the expected
chip reliability (at the 90 % confidence level) after 10 years of normal use?

Solution

1. Effective observation time for the sample of chips is:

t ¼ AFð Þ � tStress ¼ 100 � 1, 000 h ¼ 100, 000 h ¼ 11:4 years

(continued)

438 19 Sampling Plans and Confidence Intervals



2. The upper end of average failure rate estimation (at 90 % confidence level)
is given by Eq. (19.35). Using Appendix H for the Chi square distribution
value, we obtain:

λh i@P�CL � χ2 P; v ¼ 2xþ 2ð Þ½ �=2
SSð Þ � AF � tStressð Þ ¼ χ2 0:9; v ¼ 2ð Þ½ �=2

231ð Þ � 100 � 1; 000 hð Þ

¼ 4:61=2

2:31	 107h
¼ 1:0	 10�7=hr ¼ 100 Fit

∴ λh i@90%�CL � 100 Fit

3. For an average failure rate of hλi ¼ 1 Fit ¼ 10�9/h over 11.4 years of
normal use conditions, then the fraction of failures (after 10 years of normal
use conditions) becomes [see Eq. (5) in Chap. 7)]:

F t ¼ 10 yearsð Þ ¼ 1�M t ¼ 10 yearsð Þ
M t ¼ 0ð Þ ¼ 1� exp � λh it½ �

¼ 1� exp � 10�7=hr
� � � 87; 600 hr

� �
¼ 8:8	 10�3

4. For 10 years of service (under normal use conditions), this chip has a
reliability R of (at the 90 % confidence level):

R ¼ 1 – F(t ¼ 10 years) ¼ 0.9912
or
R ¼ 99.12% reliable at the 90 % Confidence Level

Problems

1. To find the fraction of defective medical devices, from a large population of such
devices, a sample size of 100 devices was randomly selected from the population
and tested. One defective device was found. Using the Chi square distribution,
what is the 90 % confidence interval for the fraction defective of the population of
such devices?

Answer: 0.00105 � F � 0.0389

2. To find the fraction defective of a large population of stainless steel pipes, a
sample size of 50 pipes was randomly selected from the population of such pipes
and the sample was pressurized to 1,000 psi. Zero defects were found. Using the
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Chi square distribution, what is the 90 % confidence interval for the fraction
defective of the population of such pipes?

Answer: 0 � F � 0.0461

3. An electronics store is worried about the defect level for a large population of TVs
being sold. Using the Chi square distribution, what sample size should be
randomly selected from the population, turned on and tested, to ensure (at 90 %
confidence level) that the fraction defective is � 0.5 %? Assume that we accept
only on finding zero defects in the sample.

Answer: SS ¼ 47

4. Valves, going into the cooling system of a nuclear reactor, must have a very low
level fraction defective � 0.1 %. Using the Chi square distribution, at the 90 %
confidence level, what sample size should be randomly drawn from a large
population of such valves and then tested/stressed with accepting only on zero
defective valves being found in the sample?

Answer: SS ¼ 2,303

5. Balloons are being tested for defectivity. Using the Chi square distribution, at the
90 % confidence level, how many balloons should be randomly drawn from a
large population of such balloons and pressurized/tested to claim that the fraction
of defective balloons in the population is �1 %?

(a) Assume that you accept only when finding zero defects in the sample of
size SS.

(b) Assume that you accept only when finding one or fewer defects in the sample
of size SS.

(c) Assume that you accept only when finding two or fewer defects in the sample
of size SS.

Answers: (a) SS ¼ 231, (b) SS ¼ 389, (c) SS ¼ 533

6. A sample size of 25 O-rings was randomly selected from a large population of
such O-rings and the results for the sample followed closely a normal distribution
with a mean/median value of (x50)s ¼ 181.6 mm and with a standard deviation of
σs ¼ 3.2 mm. What are the 90 % confidence intervals for the population x50 and
the population σ?

Answers: (180.5 mm � x50 � 182.7 mm) and (2.8 mm � σ � 4.0 mm)

7. In an electromigration test, 30 metal conductors were randomly selected from a
large population of such conductors and stressed at a constant current density
until the time-to-failure for each conductor was recorded. The time-to-failure data
for the sample was described well by a lognormal distribution with a median
time-to-failure of (t50)s ¼ 412 h and with a logarithmic standard deviation of σs ¼
0.52. What are the 90 % confidence intervals for the population t50 and σ?

Answers: (350 h � TF50 � 485 h) and (0.46 � σ � 0.64)
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8. In a corrosion test, 26 devices were randomly selected from a large population
of such devices and stressed at a constant humidity and temperature until the
time- to-failure for each device was recorded. The time-to-failure data for the
sample was described well by a lognormal distribution with a median time-to-
failure of (t50)s ¼ 212 h and with a logarithmic standard deviation of σs ¼ 0.42.
What are the 90 % confidence intervals for the population t50 and σ?

Answers: (184 h � TF50 � 245 h) and (0.37 � σ � 0.53)

9. In a thermal cycling fatigue test, a sample of 29 devices was randomly selected
from a large population of such devices and the sample was cycled from -65 to
+150 
C until failure occurred. The cycles-to-failure data for the sample was
described well by a lognormal distribution with a median cycle- to-failure of
(CTF50)s ¼ 812 cycles and a logarithmic standard deviation of σs ¼ 0.64. What
are the 90 % confidence intervals for the population CTF50 and σ?

Answers: (661 cyc � CTF50 � 997 cyc) and (0.56 � σ � 0.79)

10. In a time-dependent dielectric breakdown (TDDB) test, a sample of 25 capacitors
was randomly selected from a large population of such capacitors and the
sample was TDDB stressed at a constant voltage and temperature until the
time-to-failure for each device was recorded. The time-to-failure data for the
sample was described well by a Weibull distribution with a characteristic time-
to-failure of (t63)s ¼ 505 h and a Weibull slope of βs ¼ 1.82. What are the 90 %
confidence intervals for the population t63 and β?

Answers: (388 h � TF63 � 658 h) and (2.10 � β � 1.47)
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Appendix B: Useful Physical Constants

Physical constant Value Units

Avagadro’s number N0 ¼ 6.02 � 1023 Particles/mole

Electronic charge e ¼ 1.60 � 10�19 C

Electronic mass me ¼ 9.11 � 10�31 kg

Planck’s constant h ¼ 4.14 � 10�15 eV.s

Speed of light c ¼ 3.00 � 108 m/s

Boltzmann’s constant KB ¼ 8.62 � 10�5 eV/K

Gas constant R ¼ 8.31 J/(mole-K)

Permittivity of free space ε0 ¼ 8.85 � 10�12 C2/(N-m2)

Permeability of free space μ0 ¼ 4π � 10�7 N/A2

Stefan’s constant σ ¼ 5.67 � 10�8 W/(m2 K4)

Faraday’s constant F ¼ 9.65 � 104 C/mole

Bohr’s radius a0 ¼ 0.53 Å

Appendix C: Useful Rules-of-Thumb

Molecular bonding distance � 1–2 Å

Molecular strong single-bond energy � few eV

Molecular vibration frequency � 1013/s

Ultimate tensile strength of strong materials � GPa

Metals compressive strength � tensile strength

Brittle materials compressive strength � 15 � tensile strength

Degradation activation energy � 1 eV

Degradation rate � 2 � increase for each 10 �C rise

Self-diffusion temperature in solids T(K ) � T(K )melt/2

Electromigation-concern current density (Al, Cu) � MA/cm2

Fusing-concern current density (Al, Cu) � 20 MA/cm2

Silica dielectric breakdown strength � 10 MV/cm

Particle mean thermal-energy (3/2)(KBT )@300K � 0.04 eV

Phonon energy (near ground state) hv � 0.04 eV

Photon energy (hc)/λ � 1.24 eV@ λ ¼ 1μm

Rules-of-Thumb means that the value listed is only approximately correct and should be used only
for rough-estimate type of calculations. The value listed is generally the correct order of magnitude
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Appendix D: Useful Mathematical Expressions

Some useful relations
xaxb ¼ xa+b

(xa)b ¼ xab

exp(x) exp ( y) ¼ exp (x+y)
ln(xy) ¼ ln (x)+ ln ( y)
ln(x/y) ¼ ln (x) � ln ( y)
ln(x) ¼ ln (10)log10(x)

¼ 2.3log10(x)
ln[exp(x)] ¼ x
exp[ln(x)] ¼ x
exp(0) ¼ 1
exp(1) ¼ 2.71828

exp xð Þ ¼ 1þ xþ x2

2!
þ x3

3!
þ � � �

ln 1þ xð Þ ¼ x� x2

2
þ x3

3
� � � �

(jxj<1)

Vectors
~A¼ biAx þbjAy þ bkAz

~A � ~B¼ AxBx þ AyBy þ AzBz

~Ax~B¼
bi bj bk
Ax Ay Az

Bx By Bz

�������
�������

¼bi AyBz � AzBy

� �
þbj AzBx � AxBz½ �
þbk AxBy � AyBx

� �
Divergence

~∇ � ~A¼ ∂Ax

∂x
þ ∂Ay

∂y
þ ∂Az

∂z
Curl

∇� ~A¼

bi bj k

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

���������

���������
¼bi ∂Az

∂y
� ∂Ay

∂z

� �

þbj ∂Ax

∂z
� ∂Az

∂x

� �

þbk ∂Ay

∂x
� ∂Ax

∂y

� �

Gradient

~∇f ¼ bi ∂ f

∂x

� �
þbj ∂ f

∂y

� �
þ bk ∂ f

∂z

� �
Divergence theoremð
volume v

	
~∇ � ~A
dv ¼ ð

area a

~A � d~a

Stokes’ theoremð
area a

	
~∇� ~A


 � d~a ¼
ð

line 1

~A � d~l
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Appendix E: Useful Differentials and Definite Integrals

Often used differentials Often used definite integrals

d
dx

x ¼ 1

d
dx

cf xð Þ ¼ c
d
dx

f xð Þ
(c is a constant)

d
dx

xm ¼ mxm�1

d
dx

exp xð Þ ¼ exp xð Þ
d
dx

ln xð Þ ¼ 1
x

d
dx

ln 1þ xð Þ ¼ 1
1þ x

d
dx

ln 1� xð Þ ¼ � 1
1� x

d
dx

sin xð Þ ¼ cos xð Þ
d
dx

cos xð Þ ¼ � sin xð Þ
d
dx

fgð Þ ¼ g
d f
dx

þ f
dg
dx

ðx2
x1

dx ¼ x2 � x1

ðx2
x1

cf xð Þdx ¼ c

ðx2
x1

f xð Þdx

ðx2
x1

xmdx ¼ 1
mþ 1

xmþ1
2 � xmþ1

1

� �
(note: m 6¼ �1)ðx2

x1

exp xð Þdx ¼ exp x2ð Þ � exp x1ð Þ

ðx2
x1

dx
x
¼ ln x2ð Þ � ln x1ð Þ ¼ ln x2=x1ð Þ

ðx2
x1

dx
1þ x

¼ ln
1þ x2
1þ x1

� �

ðx2
x1

dx
1� x

¼ ln
1� x1
1� x2

� �

ðx2
x1

sin xð Þdx ¼ cos x1ð Þ � cos x2ð Þ

ðx2
x1

cos xð Þdx ¼ sin x2ð Þ � sin x1ð Þ

ðx2
x1

f xð Þdg xð Þ ¼ f x2ð Þg x2ð Þ

�f x1ð Þg x1ð Þ

�
ðx2
x1

g xð Þdf xð Þ
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Appendix F: Free-Energy

Potential Energy φ Associated with Conservative Forces

If a potential energy φ(x, y, z) is derived from a conservative force f, then dφ(x, y, z)
is an exact differential:

dφ x; y; zð Þ ¼ ∂φ
∂x

� �
y, z
dxþ ∂φ

∂y

� �
x, z
dyþ ∂φ

∂x

� �
x,y
dz

¼ �f xdx� f ydy� f zdz

¼ �~f � d~x

ðF:1Þ

Note that in the equation above:

f x ¼ � ∂φ
∂x

� �
y, z
; f y ¼ � ∂φ

∂y

� �
x, z
; f z ¼ � ∂φ

∂z

� �
x,y

ðF:2Þ

For conservative forces, the potential difference Δφ in Eq. (F.1) depends only on
the end points for the integration, not on the path selected between the end points.
Thus, for conservative forces the closed-path integral must be equal to zero regard-
less of the path selected:

þ
dφ x; y; xð Þ ¼ �

þ
~f � d~x ¼ 0 ðF:3Þ

Internal Energy U of a Thermodynamic System

The internal energy U of a system of particles is the sum of the potential and kinetic
energies of all the particles in the system. The First Law of Thermodynamics tells us
that the internal energy U can be transformed/changed by heat flow and/or work, but
the total energy must be conserved:

dU ¼ δ Heatð Þ þ δ Workð Þ ðF:4Þ

The use of the symbol δ in Eq. (F.4) means that the quantities enclosed may not be
exact differentials.1 Equation (F.4) states that the internal energy U of a system of
particles can be changed by: heat flowing into the system (+) or out of the system
(�); and/or by doing work on the system (+) or the system doing work (�). Equation
(F.4) can also be expressed as:

1Before Eq. (F.4) can be integrated, details of the heat-transfer process and details of how the work
is to be performed must be given.
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dU ¼ TdSþ
X
i

Fidxi

¼ TdS� pdV þ μdN þ EdPþ HdM þ Fdlþ etc
ðF:5Þ

Thus, we will postulate that the internal energy U of a system of particles can be
described by a set of thermodynamic extensive parameters2: entropy S; volume V;
mole number N, plus any system changes ε (polarization P, magnetization M,
elongation l, etc.) due to a external agent ξ acting on the system. Because the
external agent ξ does work on the system, it can bring more local order to the system
(increase in polarization, magnetization, elongation, etc.). However, the work done
by ξ on the system also increases the potential energy of the system. As discussed in
Chap. 2, higher energy states are generally less stable and the system will look for
ways of degrading to lower energy states.

Since energy must be conserved, then U(S, V, N, ε) is expected to be an exact
differential and we can express it as:

dU S;V ;N; εð Þ ¼ ∂U
∂S

� �
V ,N,ε

dSþ ∂U
∂V

� �
S,N,ε

dV þ ∂U
∂N

� �
S,V ,ε

dN

þ ∂U
∂ε

� �
S,V ,N

dε

¼ TdS� pdV þ μdN þ ξdε

ðF:6Þ

where

T ¼ ∂U
∂S

� �
V ,N,ε

; p ¼ � ∂U
∂V

� �
S,N,ε

; μ ¼ ∂U
∂N

� �
S,V ,ε

; ξ ¼ ∂U
∂ε

� �
S,V ,N

ðF:7Þ

Helmholtz Potential (Free-Energy F)

The Helmholtz Potential (Free-Energy F) is a defined thermodynamic potential:

F ¼ U � TS ðF:8Þ

Differentiating, one obtains:

dF ¼ dU � TdS� SdT ðF:9Þ

2A system parameter that depends on system size (for example mass) is referred to as extensive
parameter. A system parameter that does not depend on system size (for example mass-density) is
referred to as an intensive parameter.
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Substituting for dU [substituting Eq. (F.6) into Eq. (F.9)], gives:

dF T ;V ;N; εð Þ ¼ �SdT � pdV þ μdN þ ξdε ðF:10Þ
Integrating Eq. (F.10), one obtains the change in Helmholtz Free Energy DF:

ΔF ¼ F T2;V2;N2; ε2ð Þ � F T1;V1;N1; ε1ð Þ

¼ �
ðT2

T1

SdT �
ðV2

V1

pdV þ
ðN2

N1

μdN þ
ðE2
E1

ξdε
ðF:11Þ

If the generalized external force ξ acting on the system is a conservative force,
then F(T, V, N, ε) is an exact differential and can also be expressed as:

dF T;V ;N; εð Þ ¼ ∂F
∂T

� �
V ,N,ε

dT þ ∂F
∂V

� �
T ,N,ε

dV þ ∂F
∂N

� �
T ,V ,ε

dN

þ ∂F
∂ε

� �
T ,V ,N

dε

ðF:12Þ

Comparing Eq. (F.10) with Eq. (F.12), one obtains:

S ¼ � ∂F
∂T

� �
V ,N,ε

; p ¼ � ∂F
∂V

� �
T ,N,ε

; μ ¼ ∂F
∂N

� �
T ,V ,ε

; ξ ¼ ∂F
∂ε

� �
T ,V ,N

ðF:13Þ

Gibbs Potential (Free-Energy G)

The Gibbs Potential (Free-Energy G) is a defined thermodynamic potential:

G ¼ U � TSþ pV ðF:14Þ
Differentiating, one obtains:

dG ¼ dU � TdS� SdT þ pdV þ Vdp ðF:15Þ
Substituting for dU [substituting Eq. (F.6) into Eq. (F.15)], gives:

dG T ; p;N; εð Þ ¼ �SdT þ Vdpþ μdN þ ξdε: ðF:16Þ
Integrating Eq. (F.16), one obtains the change in Gibbs Free Energy ΔG:

ΔG¼ G T2; p2;N2; ε2ð Þ � G T1; p1;N1; ε1ð Þ

¼ �
ðT2

T1

SdT þ
ðp2
p1

Vdpþ
ðN2

N1

μdN þ
ðE2
E1

ξdε ðF:17Þ
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If the generalized external force ξ acting on the system is a conservative force,
then G(T, p, N, ε) is an exact differential and can also be expressed as:

dG T; p;N; εð Þ ¼ ∂G
∂T

� �
p,N,ε

dT þ ∂G
∂p

� �
T ,N,ε

dpþ ∂G
∂N

� �
T ,p,ε

dN

þ ∂G
∂ε

� �
T ,p,N

dε

ðF:18Þ

Comparing Eq. (F.16) with Eq. (F.18), one obtains:

S ¼ � ∂G
∂T

� �
p,N,ε

; V ¼ ∂G
∂p

� �
T ,N,ε

; μ ¼ ∂G
∂N

� �
T ,p,ε

; ξ ¼ ∂G
∂ε

� �
T ,p,N

ðF:19Þ

Note that for constant pressure and constant volume system changes ΔF ¼ ΔG.

Properties of Thermodynamic Potentials

Any one of the thermodynamic potentialsU(S, V, N, ε), F(T, V, N, ε) orG(T, p, N, ε),
when expressed in terms of their characteristic variables, provides a complete
thermodynamic description of the system. These thermodynamic potentials, in
addition to being exact differentials, are also homogeneous functions of degree
one. As such, (using the Euler Theorem for homogeneous functions of degree one)
these thermodynamic potentials can be written as:

U S;V ;N; εð Þ ¼ ∂U
∂S

� �
V ,N,ε

Sþ ∂U
∂V

� �
S,N,ε

V þ ∂U
∂N

� �
S,V ,ε

N þ ∂U
∂E

� �
S,V ,N

ε

¼ TS� pV þ μN þ ξε

ðF:20Þ
Using Eq. (F.20), along with Eqs. (F.8) and (F.14), gives:

F ¼ U � TS ¼ �pV þ μN þ ξε ðF:21Þ

and

G ¼ U � TSþ pV ¼ μN þ ξε: ðF:22Þ
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Appendix G: t(1 � α/2, v) Distribution Values

Degrees
of
freedom v

α (significance level)

0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1

1 � α/2

0.995 0.99 0.975 0.95 0.9 0.8 0.7 0.6 0.5

1 63.6567 31.8205 12.7062 6.3138 3.0777 1.3764 0.7265 0.3249 0.0000

2 9.9248 6.9646 4.3027 2.9200 1.8856 1.0607 0.6172 0.2887 0.0000

3 5.8409 4.5407 3.1824 2.3534 1.6377 0.9785 0.5844 0.2767 0.0000

4 4.6041 3.7469 2.7764 2.1318 1.5332 0.9410 0.5686 0.2707 0.0000

5 4.0321 3.3649 2.5706 2.0150 1.4759 0.9195 0.5594 0.2672 0.0000

6 3.7074 3.1427 2.4469 1.9432 1.4398 0.9057 0.5534 0.2648 0.0000

7 3.4995 2.9980 2.3646 1.8946 1.4149 0.8960 0.5491 0.2632 0.0000

8 3.3554 2.8965 2.3060 1.8595 1.3968 0.8889 0.5459 0.2619 0.0000

9 3.2498 2.8214 2.2622 1.8331 1.3830 0.8834 0.5435 0.2610 0.0000

10 3.1693 2.7638 2.2281 1.8125 1.3722 0.8791 0.5415 0.2602 0.0000

11 3.1058 2.7181 2.2010 1.7959 1.3634 0.8755 0.5399 0.2596 0.0000

12 3.0545 2.6810 2.1788 1.7823 1.3562 0.8726 0.5386 0.2590 0.0000

13 3.0123 2.6503 2.1604 1.7709 1.3502 0.8702 0.5375 0.2586 0.0000

14 2.9768 2.6245 2.1448 1.7613 1.3450 0.8681 0.5366 0.2582 0.0000

15 2.9467 2.6025 2.1314 1.7531 1.3406 0.8662 0.5357 0.2579 0.0000

16 2.9208 2.5835 2.1199 1.7459 1.3368 0.8647 0.5350 0.2576 0.0000

17 2.8982 2.5669 2.1098 1.7396 1.3334 0.8633 0.5344 0.2573 0.0000

18 2.8784 2.5524 2.1009 1.7341 1.3304 0.8620 0.5338 0.2571 0.0000

19 2.8609 2.5395 2.0930 1.7291 1.3277 0.8610 0.5333 0.2569 0.0000

20 2.8453 2.5280 2.0860 1.7247 1.3253 0.8600 0.5329 0.2567 0.0000

21 2.8314 2.5176 2.0796 1.7207 1.3232 0.8591 0.5325 0.2566 0.0000

22 2.8188 2.5083 2.0739 1.7171 1.3212 0.8583 0.5321 0.2564 0.0000

23 2.8073 2.4999 2.0687 1.7139 1.3195 0.8575 0.5317 0.2563 0.0000

24 2.7969 2.4922 2.0639 1.7109 1.3178 0.8569 0.5314 0.2562 0.0000

25 2.7874 2.4851 2.0595 1.7081 1.3163 0.8562 0.5312 0.2561 0.0000

26 2.7787 2.4786 2.0555 1.7056 1.3150 0.8557 0.5309 0.2560 0.0000

27 2.7707 2.4727 2.0518 1.7033 1.3137 0.8551 0.5306 0.2559 0.0000

28 2.7633 2.4671 2.0484 1.7011 1.3125 0.8546 0.5304 0.2558 0.0000

29 2.7564 2.4620 2.0452 1.6991 1.3114 0.8542 0.5302 0.2557 0.0000

30 2.7500 2.4573 2.0423 1.6973 1.3104 0.8538 0.5300 0.2556 0.0000

40 2.7045 2.4233 2.0211 1.6839 1.3031 0.8507 0.5286 0.2550 0.0000

50 2.6778 2.4033 2.0086 1.6759 1.2987 0.8489 0.5278 0.2547 0.0000

60 2.6603 2.3901 2.0003 1.6706 1.2958 0.8477 0.5272 0.2545 0.0000

70 2.6479 2.3808 1.9944 1.6669 1.2938 0.8468 0.5268 0.2543 0.0000

80 2.6387 2.3739 1.9901 1.6641 1.2922 0.8461 0.5265 0.2542 0.0000

90 2.6316 2.3685 1.9867 1.6620 1.2910 0.8456 0.5263 0.2541 0.0000

100 2.6259 2.3642 1.9840 1.6602 1.2901 0.8452 0.5261 0.2540 0.0000

In Excel: t(1 � α/2, v) ¼ TINV(α, v)
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Index

A
Accelerated testing, 2, 125, 137, 138, 140–142,

144, 200, 256, 353, 438
uniform acceleration, 140, 142, 143

Acceleration factor, 2, 117, 130, 131,
137–147, 149–153, 157, 158,
162–164, 173, 193, 200, 201, 210,
211, 216, 218, 253, 254, 257, 274,
275, 277, 296, 307, 309, 311,
353, 438

Activation energy
enthalpy of activation, 132, 133, 195
free-energy of activation, 126, 128,

132–133
internal energy of activation, 132
Qbulk, 108, 134, 140, 167
Qcreep, 255, 358–361
Qdiffusion, 70
QEM, 355
Qgb, 140, 167
QHCI, 357
Qlattice-diffusion, 358
QMobile-Ions, 358
QNBTI, 215, 216
QSM, 251, 281
QTDDB, 355, 356

Adhesion failure, see Delamination
blistering (see Delamination)
buckling (see Delamination)
cracking (see Crack)

Al-alloy, 166–169, 171, 172, 174, 176, 178,
217, 268, 300, 355, 363

Alkaline metal-ions, see Mobile-ions
Al-oxide, see Corrosion
Alpha particle, 29–31

Ambient, 175, 184, 185, 189, 218, 284, 287,
288, 302, 316, 381, 382, 390–395,
401, 407–410, 415

Ambient corrosion, see Corrosion
Anode injection, see Time-dependent dielectric

breakdown
Anode oxidation, see Corrosion
Asymmetrical potential, see Bonding potential
Attractive potential, see Bonding potential
Au ball-bond, 57, 82, 190
Average failure rate, see Failure rate

B
Bamboo grain structure, see Electromigration
Barrier metal, see Electromigration
Basquin’s Law, see Fatigue
Bathtub curve, see Failure rate
Bell-shaped curve, see Gaussian distribution
Binomial distribution, 424–427

probability, 424–425
sample size, 425–427

Bipolar current waveforms, see
Electromigration

Black equation, see Electromigration
Blech effect, see Electromigration
Blistering, see Delamination
Bolt, 17, 19, 260–262, 273, 361, 364
Boltzmann, 26, 27, 70, 72, 126, 195, 207, 241
Bonding defects, 227

dangling bonds, 244, 245
dislocations, 241–244, 248
grain boundaries, 244–245, 248
point defect, 240
vacancies, 240–241, 248
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Bonding pad corrosion, see Corrosion
Bonding potential

asymmetrical potential, 278, 279
attractive potential, 227
bond breakage, 227, 237
bond energy, 230–232, 238
Born-Landé potential, 229
close-pack arrangement, 229
covalent, 196, 227, 229, 230
equilibrium position, 278
harmonic potential, 233
Harrison potential, 229
ionic bonding, 229
Lenard-Jones potential, 229
Mie-Grüneisen potential, 237, 238
quantum mechanics, 229, 279
repulsive potential, 227, 228
secondary bonds, 230, 231
single-bond energies, 230, 231, 234
strength/stability of bond, 230

Born-Landé potential, see Bonding potential
Breakdown distributions, 365–366, 372–375
Breakdown/rupture, 2, 154–162
Brittle materials, 192, 193, 243, 244, 249, 252,

265–269, 272, 278
Buckling, see Delamination
Bulk/lattice diffusion, see Diffusion
Burnin, see Failure rate

C
Capability, see Gaussian distribution
Capacitor, 1, 13, 17, 19, 20, 33–35, 90, 97,

121, 151, 152, 161, 162, 195, 199,
200, 218, 219, 246, 321, 325, 328,
368, 369, 371–375, 378, 397, 441

Cathode reduction, see Corrosion
Cathode voiding, see Electromigration
Cell phone, 21, 123, 125
Ceramics, 243, 249, 252
Charasteristic time t63, see Weibull distribution
Chemical mechanical polishing (CMP),

169, 185
Chemical potential, 11, 23, 71, 208, 295
Chi-square distribution

χ2(P,ν) distribution values, 453–454
failure rates, 437–439

Chlorides and fluorides, see Corrosion
Circuit board, 391
Close-pack arrangement, see Bonding potential
CMP, see Chemical mechanical polishing

(CMP)
Coffin-Manson Model, see Fatigue
Competing mechanisms, 50–51, 57, 178
Complementary model, 201–205

Compliance equation, 307, 310, 311, 316
Composite trapezoidal and Simpson’s rule,

see Numerical integration
Conduction, 197, 198, 229, 230, 295, 385,

407, 410, 411
Confidence interval, 3, 419–441
Confined gas, 15, 17
Conservation of energy, 10, 332–335, 338,

339, 382–385, 397, 412
Conservative force, 14, 24, 29
Conservative TF model, 75–76
Constant load

creep rate, 250, 252–254
five-power-law, 358
fixed strain, 175, 177, 249, 258, 259
steady-state creep, 251
stress relaxation, 176, 177, 248, 249,

258–263, 361
Constant ramp rate, 150, 161, 164, 369
Constrained thermal expansion, see

Thermo-mechanical stress
Convection, 355, 391, 407–411
Conversion, 74, 85, 95, 96, 98, 99, 238,

239, 305–329
Conversion factors, 238
Cooling agent, 383
Corrosion

Al-oxide, 168
ambient corrosion, 184, 185
anode, 184, 185, 195, 197, 198, 202,

205, 293, 295
bonding-pad corrosion, 183
cathode, 174, 184, 185, 195, 293, 295
cell, 184, 185, 293
chlorides, 183, 184, 187, 188, 293, 295
corrosion activity, 186, 245
corrosion failure, 183, 186, 285, 286
corrosion inhibitor, 186
corrosion product, 183, 185, 295
Cu-oxide, 168
dry oxidation, 285–292, 294
electrolyte, 184, 293
enhanced crack growth, 245, 266, 298
fluorides, 293, 295
humidity-induced oxidation, 294–296
internal-chip corrosion, 183
linear growth region, 287–288
logarithmic oxide-growth, 291–292
metal hydroxides, 292
oxidation reaction, 184, 287
oxide thickness, 53, 57, 64, 66, 195, 205,

287, 289, 290, 356
reduction reaction, 185, 213
residual chlorides, 183
standard electrode potentials, 293, 294
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time window, 183, 186, 189, 213, 296
wet corrosion, 184, 187, 292–294

Cost, 76, 144, 165, 353, 416
Covalent, see Bonding potential
Cp, see Gaussian distribution
Cpk, see Gaussian distribution
Crack

Gcrit, 268, 269
Griffith, 265, 269, 278
initiation, 192
pre-existing crack, 275–277
propagation, 1, 40, 70, 191, 192, 218,

227, 243–245, 249, 263, 266–269,
278, 298

stress concentration factor, 265, 268,
275, 300

stress raisers, 263–266
stress risers, 152, 153, 263–266, 358
tips, 152, 153, 263–267, 276, 298, 358

Creep, 1, 67, 73, 105, 133–135, 145, 146,
165, 175–178, 180, 181, 227, 241–243,
249–263, 280, 281, 299, 300, 326–328,
358–361, 364

Crushing strength, 243
Cumulative fraction, 82, 84, 94, 95, 98, 157,

372, 437
Current density, 1, 2, 70, 73, 79, 133, 135, 145,

156, 165, 166, 171–175, 195, 217, 294,
322, 323, 328, 354, 355, 440

Cycles-to-failure, see Fatigue
Cyclical stress, see Fatigue

D
Damascene, 169

Dual, 169, 217
Dangling bonds, see Bonding defects
DC EM equivalents, see Electromigration
Debonding, see Delamination
Defect-free material, 5
Defective devices/materials, 3, 116, 117, 365,

419–425, 439
Defectivity, 428, 429, 440
Defect level, 3, 419, 420, 440
Degradation, 1, 2, 5–31, 33–69, 71, 93, 97,

114, 125–135, 152, 194, 196, 198,
199, 201–203, 207–209, 211–215, 227,
240, 248–250, 252, 271, 272, 278, 280,
305–310, 316, 331–352, 357–360, 362,
365, 367, 368, 370–373, 375–379, 381

Degradation rate, 2, 5, 15, 23, 24, 34, 42–47, 49,
50, 53, 56, 63, 68, 69, 97, 125–132, 134,
135, 173, 174, 195, 214, 252, 305, 381

rate constant, 68, 69, 126, 130

Delamination
adhesion failure, 277–278
blistering, 243, 249, 283, 284, 288
buckling, 243, 248, 249, 281, 283, 288
cracking (see Crack)
de-bonding, 277

Device failure, 1–3, 34, 35, 39, 43, 59, 61, 63,
93, 94, 109–110, 116, 205, 206, 212,
227, 249, 263, 266

Device-to-device variation, 138, 139, 170,
193, 195

Dielectric barrier, see Electroplating
Dielectric breakdown, 1, 134, 369, 371
Differentials and definite integrals, 446–447
Diffusion

activation energy for, 70, 184, 206, 217, 358
bulk, 170
diffusion component, 70, 206
diffusivity, 70, 213
lattice (see Diffusion (bulk))
vibration/interaction frequency, 70

Diffusions/junctions, 391
Discrete distribution, 419, 420, 424
Dislocations, see Bonding defects
Dispersion parameter, see Gaussian distribution

(standard deviation)
Dissimilar materials, 2, 50, 165, 190, 293
Dissipation, 19, 316, 338–348, 351, 355,

381–417
Dissipative work, 22–23
Divergence theorem, 68, 386
Down-direction EM, see Electromigration
dpm, 419
Drift, 24, 70, 165–166, 170, 174, 205, 206,

212, 213, 354, 357
Driving force, 5, 9, 10, 70, 71, 126, 127, 250,

277, 278, 285, 288, 294, 336, 412, 413
Ductile materials, 191, 193, 251, 268, 269
Dynamical stresses

conversion of, 305–329
duty cycle, 319–324, 326–329
pulse, 308–318

E
Early failure rate (EFR), see Failure rate
Edge dislocation, see Bonding defects
Effective thermal resistance, 390–395,

397–402, 406, 409, 411, 415, 416
Effective values

activation energy, 9, 27, 70–75, 77–80,
126–131, 134, 140, 145, 146, 156, 167,
170–172, 175, 177, 178, 181, 182, 184,
187, 188, 195–197, 206, 207, 210, 211,
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217, 219, 222, 250, 252, 253, 281, 285,
290, 299, 300, 318, 320, 321, 329, 332,
335, 355, 356, 358

dipole moment, 196, 204
static temperature, 316–318, 320, 321
Teffective, 316–318, 320, 329
ξeffective, 305–316, 319

Einstein relation, 70, 213
Elastic behavior

elasticity, 67, 227
energy density, 235, 236
Hooke’s Law, 232, 233
strain ratio, 282
stress ratio, 282

Electric fields, 1, 2, 11, 13, 18–20, 24, 78,
132–134, 145, 156, 165, 194–199,
201–208, 212, 213, 218, 219, 325,
355, 356, 368, 372, 373, 437

Electrolyte, see Corrosion (cell)
Electrolytic cell, see Corrosion
Electro-mechanical, 63
Electromigration

bamboo grain-structure, 70
barrier metal, 167, 174
bipolar current waveforms, 173
Black equation, 174
Blech effect, 170, 171
Blech length, 171, 217
cathode, 21, 166, 184, 185, 195, 197, 205,

293, 295
DC EM equivalents, 173
down-direction, 169, 170
electron wind, 166, 167, 354
reservoir effect, 174
shunting, 168, 178
sweep-back, 173
up-direction, 169, 170
via, 169
void-growth phase, 167
voiding, 1, 50, 57, 67, 68, 166–171,

174–176, 179–181, 223, 240, 248,
249, 262, 354

void-nucleation phase, 167, 174
W-plug via, 168

Electronegativity, see Pauling
Electroplating, 169

dielectric barrier, 169, 186, 296
EM, see Electromigration
E-Model, see Time-dependent dielectric

breakdown
Energy conservation, 382–384, 397
Enthalpy, 11, 12, 132
Enthalpy of activation, see Activation energy

Entropy, 6–8, 10, 12, 26, 33, 34, 132,
411–414, 416

Entropy changes, 411–414, 416
Equilibrium position, see Bonding potential
Error function complement, 82, 83
Euler differential equation, 35, 396, 397
EXCEL, 84, 89, 95
Exclusion principle, see Pauli
Exothermic reactions, 381
Exponential model, 65, 72, 75, 76, 138,

140–142, 145, 188, 219, 302, 311,
313, 315, 316, 373, 376

Extensive parameter, see Gibbs free energy
External energy, 383

F
Failure mechanisms, 1–3, 70, 76, 79, 80,

93, 100, 103–105, 114, 139, 165–219,
227–302, 305, 321, 353, 357, 361,
362, 381

Failure models
integrated circuits, 1, 2, 116, 122, 140,

165–219, 290, 295, 362–364, 420
mechanical components, 1, 35, 121, 253,

258, 260, 325, 327, 358, 359
Failure probability, 97, 100
Failure rate

average failure rate, 110–113, 121–123,
437–439

bathtub curve, 114–118, 120
burnin, 381, 382
EFR, 114–120
FIT, 111, 112, 114, 118
IFR, 114, 117–120
wear-out, 114, 115, 117–120, 122, 125,

134, 140
Fatigue

Basquin’s Law, 273
Coffin-Manson, 191–193, 272
CTF, 62, 121, 145, 191–194, 270, 272–274,

276, 277
cycles to failure, 62, 123, 145, 146,

190–194, 218, 270, 272–274, 276,
301, 440

cyclical stress, 62, 189, 192, 193, 270, 271,
273–276, 301, 305, 361

high-cycle fatigue, 191, 272–275
low-cycle fatigue, 191, 272
mean stress offset, 272–274

Fermi-level, 208
Fickian transport, 70
Fins, 393
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First Law of Thermodynamics, 382, 383
FIT, see Failure rate
Five-power law, see Creep
Flux divergence

accumulation, 67–69, 166, 167, 170, 191,
195, 205, 206, 357

voiding, 67, 68, 70, 166–168, 176, 262
Fourier’s Law, 384–386, 412
Fowler-Nordheim, 197, 198
Fraction of defective, 422, 439
Free energy, 25, 27, 126–130, 132–133, 245,

277, 278, 285, 286, 294
Free-energy of activation, see Activation

energy
Frenkel-Poole, see Poole-Frenkel
Frictional processes, 382
Full-width at half-maximum, 325

G
Galvanic, 293

couple, 293, 294
Gaussian distribution

bell-shaped, 81
capability Cp, 87, 88
capability index Cpk, 87, 88
mean, 81
median, 81, 82
normal distribution, 81–86
process control, 87–89
standard deviation, 81, 90
Z-value, 83–85, 89

Gcrit, see Crack
Generalized stress, 10, 11, 13, 14, 71, 125,

127, 128
Generation volume, 382, 387, 403
Geometric series, 342
Gibbs free energy

extensive parameter, 11
intensive parameter, 11
internal energy, 10, 11

Gibbs potential, 8, 10–26, 125–128, 336, 337
Gradients, 23, 24, 71, 166, 167, 175, 176, 179,

180, 240, 381, 382, 384, 385, 397, 412
Grain boundaries, see Bonding defects
Griffith, see Crack

H
H+ ions, 212, 213
Hard/brittle, 218, 284
Harmonic potential, see Bonding potential
Harrison potential, see Bonding potential

HCI, see Hot carrier injection
Heat

capacity, 382, 396, 399–402, 416
dissipation, 355, 382, 387–390, 393–396,

398
flow, 382–388, 390, 397, 412–414, 416
flux, 382, 384, 395
generation, 381–417
generation volume, 403
sink, 386–390, 393–397
transfer, 381–387, 394, 407–414

Helmholtz Free Energy, 449–450
Hooke’s Law, see Elastic behavior
Hot carrier injection (HCI)

gate current, 209, 211
HCI, 207–211
substrate current, 209–211

I
IC contacts, 174
Inelastic, see Plastic deformation
Infant mortality, 116
Injection, see Hot carrier injection
Instability, 10, 28, 29, 45, 212–216, 356
Instantaneous, 2, 15, 17, 19, 77, 109–111,

113–114, 121–123, 134
Insulators, 165, 286
Integrated circuits (ICs), 1, 2, 116, 122, 140,

165–219, 290, 295, 296, 305, 356,
362–364, 391, 392, 415, 420, 421

Intensive parameter, see Gibbs free energy
Interconnect dielectrics, 178, 187, 198, 203,

204, 206
Interfaces, 165–170, 176, 180, 185, 187, 191,

192, 194, 205–209, 212–215, 244, 245,
277, 278, 281, 356, 357, 385

Interface-state generation, 1, 207
Intergrals and differentials, 383
Internal chip corrosion, see Corrosion
Internal energy, 10, 11, 15, 22, 25, 26,

132, 383
Internal energy of activation, see Activation

energy
Intrinsic failure rate (IFR), see Failure rate
Ionic bonding, see Bonding potential
Ionic character, see Pauling

J
Joule heating, 73, 145, 156, 173–175, 194,

195, 323, 382
Junction temperature, 391–394, 416
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K
Kaplan-Meiers method, see Mixed multiple

failure mechanisms
Kelvin temperature, 10, 70, 126
Kinetics, 1, 6, 10, 62–63, 72, 73, 125, 138,

139, 142, 143, 181, 207, 215, 216,
252, 255, 295, 383

Kinetic values, 71, 138, 139, 252, 255, 359
Kirkendall voiding, 50, 57

L
Large amplitude oscillations, 325, 331
Lattice, 24–28, 140, 165–167, 208, 230,

240–242, 244, 245, 248
Lattice/bulk diffusion, see Diffusion
Left of the screen, see Screening
Lenard-Jones potential, see Bonding potential
Life-support system, see Mission critical
Linear oxide growth rate, see Corrosion
Lithium-ion battery, 19, 21
Logarithmic oxide growth, see Corrosion
Lognormal distribution, 93–95, 97, 100,

104–106, 121, 123, 139, 142, 145,
146, 158, 159, 172, 187, 193, 252,
419, 431, 433–434, 440

logarithmic standard deviation σ (see
Lognormal distribution)

median time-to-failure t50 (see Lognormal
distribution)

Lucky electron, see Hot carrier injection (HCI)

M
Maclaurin series, 34, 77, 80, 127, 128, 130
Madelung constant, 229
Materials/device degradation, see Degradation
Materials microstructure, 62, 71, 93
Materials strength, see Strength
Mathematical expressions, 446
Mean, see Gaussian distribution
Mean stress offset, see Fatigue
Mean-time between failures (MBTF), see

Failure rate
Median, see Gaussian distribution
Metabolic processes, 382
Metal hydroxides, see Corrosion
Metal-ions, 67, 166, 167, 230, 287, 295
Metal-oxide (MxOy) formation, see Corrosion
Metal-oxide-silicon field-effect transistors

(MOSFETs), 1, 80, 134, 146, 194, 195,
203, 207–210, 212, 214, 216, 219, 286,
356, 357, 363, 364

Metal-pad/lead-frame, 391
Metals, 1, 2, 5, 6, 17, 40, 44, 45, 50, 53, 64, 67,

70, 73, 78, 79, 134, 135, 155, 164–172,
174–179, 184, 186, 191, 193, 195, 206,
217, 218, 229, 230, 239, 243, 244, 250,
252–254, 262, 263, 268–270, 272–274,
284–288, 292–302, 305, 327, 328, 354,
358, 362–364, 370, 376, 378, 387–391,
393, 399, 409–412, 415, 416, 440

Metastable, 5, 8, 9, 126, 250, 332, 334, 356, 414
Metastable states, 5, 8–10, 14, 15, 28, 29,

126, 128–130, 199, 332
Mie-Grüneisen potential, see Bonding potential
Mismatch in specific densities, 245
Mission critical, 109
Mission profile, 319–324, 327, 328
Mixed multiple failure distributions, 93,

103–105
points of inflection, 103

Mobile-ions, 79, 146, 147, 205–207, 357, 358
Mobility, 70, 168, 178, 184, 185, 187, 205,

213, 295
Mode, see Gaussian distribution
Modulus, 15, 17, 230, 234–236, 247, 257,

261, 267, 280, 282, 283, 299, 301
spring constant, 233
stiffness constant, 233, 298

Moments, 196, 204, 273, 334
Momentum exchange, 165
Moore’s law, 2, 165
Multimodal distributions, 93, 100–105

N
Native oxide, 170, 184, 186
Natural convection, 391
Natural/resonant frequency, 325, 331–338,

349, 350
NBTI, see Negative bias temperature instability

(NBTI)
Negative-bias temperature instability (NBTI),

165, 212–216, 219, 356, 363
Normal distribution, see Gaussian distribution
Normal operating conditions, 117, 137, 139
Nuclear reaction, 31
Nuclide, 28–31
Numerical integration, 308, 312–316, 318

O
Oscillator, 325, 331, 332, 334, 336, 338–345

classical oscillator, 233
quantum oscillator, 233
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vibrational states, 279
zero-point energy, 233

Over-design, 144, 353
Oxidation reaction, see Corrosion
Oxide thickness, see Corrosion

P
Packaged IC, 391
Parabolic oxide-growth, 289–290
Parabolic potential, 334, 337–340, 343–346
Pauli, 29, 30, 228

exclusion principle, 29, 30, 228
Pauling, 229, 231

electronegativity (see Pauling)
ionic character (see Pauling)

PBTI, 212
postivite-bias temperature instability (see

PBTI)
Peak gate current, see HCI
Periodic force, 336, 340
Periodic power, 403–407
Photovoltaic-induced voltage, 295
Physical constants, 445
Physics of failure, 76, 138–140, 156, 306
Pins, 391
Planck’s constant, 445
Plastic deformation, 17, 175, 191, 193, 243,

259, 264, 266, 268, 271, 272, 297, 298
Plasticity, 227
Plastic molding compounds, 190
Plastic strain Δεpl, 272
Point defect, see Bonding defects
Points of inflection, see Mixed multiple failure

distribution
Poisson distribution

probability, 420–422
sample-size requirements, 422–425

Polarization, 10, 11, 13, 17, 20
Poole-Frenkel, 198
Post-screen, 372–374
Power-law models, 75

TF model, 74, 138, 143, 146, 307, 311,
312, 314, 369–378

Pre-existing crack, see Crack
Probability, 84, 86, 87, 94, 97, 103, 104, 110,

126, 279, 419–421, 423–426, 432
Probability density function, 86–87, 94, 110

Q
Q, see Activation energy
Qbulk, see Activation energy

Qcreep, see Activation energy
Qdiffusion, see Activation energy
QEM, see Activation energy
Qgb, see Activation energy
QHCI, see Activation energy
Qlattice-diffusion, see Activation energy
QMobile-Ions, see Activation energy
QNBTI, see Activation energy
QSM, see Activation energy
QTDDB, see Activation energy
Quantum mechanics, see Bonding potential
Quasi-static, 10, 14
Quench hardening, 416

R
Radiation, 410, 411
Ramp-rate, 150, 151, 156, 161, 164, 219,

301, 367, 368, 378, 379
Ramp-to-breakdown, 149, 150, 154, 162,

206, 365, 372
Random events/processes, 419
Rapid/catastrophic failure, 269
Reaction rate, 68, 78, 126–130, 132, 133,

202, 287, 289–291
rate constant, 68, 78, 133, 202, 290, 291

Real stress, 133, 134, 175, 198
Rectangular stress-pulse equivalent, 312, 313
Relative humidity, 146, 184, 185, 187–189,

295, 296, 302
Reliability enhancement factor, 354

REF, 354–361
Reliability physics, 1, 2, 10, 13, 71, 84, 139
Reliability robustness, 353, 359
Repulsive potential, see Bonding potential
Resonance, 3, 325, 331–352
Resonance-induced degradation, 331–352
Resonant frequencies, 324–325

large amplitude oscillations, 325
Right of the screen, see Screening
Rules-of-thumb, 24
Rupture/fracture strength, see Strength

S
Safety factor, 2, 353
Sample size, 81, 83, 95, 103, 104, 111,

117, 119, 420, 422–426, 428–433,
435, 437–440

Sampling plan, see Sampling theory
Sampling theory, 419, 426, 435
Screening

effectiveness, 372–379
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Screening (cont.)
left of the screen, 365–367, 370
nScreen, 365–370
right of the screen, 366–370
Using Exponential TF model, 309–310,

367–369, 373, 374
Using Power-Law TF model, 369–378

Secondary bonds, see Bonding potential
Second Law of Thermodynamics, 7, 11, 411,

412, 416
Self-consistent solution, 423, 424, 426, 427, 429
Self-heating, 73, 156, 175, 323, 355, 381–387
Semiconductors, 35, 37, 44, 49, 52, 56, 60, 63,

82, 97, 100, 135, 205, 230, 286
Shear stress, 241–243, 299
Shell model, 29
Shunting current, see Barrier metal
Si–H bond, 208, 209, 212, 214, 215, 356
Silicon chips, 2, 57, 183, 218, 392, 421
Simple harmonic oscillator, 334
Simpson’s rule, see Numerical integration
Single-bond energies, see Bonding potential
Sliding friction, 22, 332
SM, see Stress migration
Solar constant, 417
Specific density, 241, 244, 245
Specific heat, 22, 383–385, 396, 400, 416
Spring constant, see Modulus
Stability, 8, 10, 14–22, 28, 29, 126, 179, 208,

209, 212, 230, 243, 332
Standard deiviation, see Statistics
Standard electrode potential, see Corrosion
Statistical process control, see Gaussian

statistics
Statistics, 3, 424, 428
Steady state creep, see Creep
Stefan’s constant, 410
Stiffness constant, see Modulus
Stirling’s approximation, 27
Storage tank, 17, 18
Strain-energy release rate, 266–267
Strain ratio, see Elastic behavior
Strength, 2, 16, 17, 19, 34, 50, 51, 57, 65,

77, 78, 87, 90, 116, 117, 134, 140,
149, 151, 153, 154, 157–159, 161,
170, 171, 203–205, 230, 235, 236,
239, 243, 246–249, 253, 257, 261,
269, 273, 274, 283, 300, 301, 337,
353, 358, 362, 365–373, 376–378

Stress
real stress, 133, 134, 175, 198, 358
virtual stress, 133–135, 175, 198

Stress concentration factor, see Crack

Stress conditions, 75, 78, 129, 130, 137,
139–141, 144–147, 153, 172, 191,
214, 249–258, 270, 299

Stress-dependent activation energy, 77, 78, 80
Stress energy density ratio, see Elastic behavior
Stress-free temperature, 177, 181, 217
Stress gradients, 71, 175, 176, 179, 180, 240
Stress migration (SM), 175–183, 217, 240,

251, 281
Stress raiser/risers, see Crack
Stress range, 75, 144, 192, 193, 270–276,

324, 328, 362
Stress ratio, see Elastic behavior
Stress relaxation, 176, 177, 248, 249, 258–263,

361, 364
Stress relief, 175, 179, 180, 240, 248–249, 283,

284, 361
Student’s t-distribtution, 431

t(1-a/2,m) distribution values, 426
Substrate current, see HCI
Surface inversion, see Mobile ions
Surface mobility, 184
Surroundings/ambient, 382
Sweep-back, see Electromigration

T
Taylor expansion, 34, 279
TDDB, see Time-dependent dielectric

breakdown
t distribution values, 426
Temperature-fall portion, 403
Temperature rise, 22, 23, 73, 382, 389, 390,

394, 398, 399, 402–404, 406, 409,
411, 415

Temperature-rise portion, 403
Tensile strength, 239, 243, 257, 273, 274, 301
Tensile stress, 1, 73, 74, 135, 145, 153, 163,

177, 178, 238, 240–243, 253, 256, 257,
260–267, 273–275, 277, 283, 284, 296,
298–301, 325, 362, 376

Thermal conductivity, 383–385, 387–389, 395
Thermal cycling, 189–194, 218, 281, 284, 302,

362–364, 440
Thermal equilibrium, 381, 382, 386, 387, 389,

398, 402, 407, 412, 416
Thermal expansion, 278–281, 283, 301,

362, 363
mismatch, 2, 190, 281–283, 362, 363

Thermal gradient, 381, 382, 412
Thermally conductive adhesive, 393
Thermal processes, see Boltzmann
Thermal relaxation, 398–401, 403, 404
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Thermal resistance, 384, 387, 389, 390, 407,
409, 414–416

θeff, 390, 397, 398, 401, 411
Thermal rise, 401–407
Thermal time-constant, 397–406, 416
Thermo-mechanical stress, 1, 2, 176, 177,

189–193, 280, 281, 283, 362
Threshold voltage, 33–35, 37, 38, 44, 52,

61, 63, 134, 213, 356, 357
Time-averaged value, 69, 206
Time-dependent dielectric breakdown

anode-injection, 197
complementary, 203
E-Model, 195–197, 199, 200, 202, 203
√E-model, 198, 199
1/E-model, 197–199, 202
Fowler-Nordheim conduction, 197, 198
H+, 212, 213
power-law V-model, 203
trap-creation, 194

Time-dependent stresses, 3, 305
Time-to-failure, 2, 3, 43, 59–80, 93–107, 117,

121, 122, 125, 133, 134, 138, 139, 141,
151, 153, 154, 156–219, 227–302, 305,
306, 308–310, 319, 323, 353, 354,
367–369, 373, 376, 378, 419, 431–441

Time window, see Corrosion
Torque analysis, 334
Toughness, 246–248, 268, 269, 299
Trap creation, 194
Trapezoidal rule, see Numerical integration
Trim and form, 391

U
Uniform acceleration, see Accelerated testing
Units, 35, 72, 73, 75, 111, 141, 193, 234, 268,

279, 280, 309, 310, 313, 369, 379, 384,
389, 420, 422–426, 429–431

Uranium, 29, 31

V
Vacancies, see Bonding defects
Vacancy, 25–27, 166, 179, 240–241, 248, 299
Vectors, 11, 240
Very high stress, 77, 78, 129–131, 252, 260
Vibrational/interaction frequency, seeDiffusion
Virtual work, 332–334

W
Warranty liability, 109
Weakest link, see Weibull distribution
Weak interfaces, see Delamination
Wear-out, see Failure rate
Weibits, 98, 99
Weibull distribution

characteristic time, 98, 104
weakest-link, 97, 114

Weibull slope, 97–99, 104, 105, 121–123,
142, 143, 154, 155, 161–164, 219,
276, 300, 301, 435, 436, 441

Work, 7–14, 16, 18, 20, 22, 23, 25, 29, 45, 54,
103, 126, 132, 184, 185, 193, 231, 243,
293, 332, 333, 336, 383, 413, 414

Y
Yield, 36, 39, 49, 56, 152, 162–164, 175, 176,

180, 246, 249, 253, 257, 258, 261,
263–266, 299–301, 327, 351, 358–362,
364, 366, 369, 372, 379, 420–422

Yielding, 230, 239, 268, 347–351
Yield stress, 17, 152, 158, 248, 249, 264, 308,

309, 358–360, 362
Young’s modulus, see Modulus

Z
Zero-point energy, see Oscillator
Z-value, see Gaussian distribution
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